Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-01-01 DOI:10.2174/0113895575277085231123165546
Wen-Zhe Nie, Qing-Kun Shen, Zhe-Shan Quan, Hong-Yan Guo, Ya-Mei Li
{"title":"Bioactivities and Structure-Activity Relationships of Usnic Acid Derivatives: A Review.","authors":"Wen-Zhe Nie, Qing-Kun Shen, Zhe-Shan Quan, Hong-Yan Guo, Ya-Mei Li","doi":"10.2174/0113895575277085231123165546","DOIUrl":null,"url":null,"abstract":"<p><p>Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113895575277085231123165546","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Usnic acid has a variety of biological activities, and has been widely studied in the fields of antibacterial, immune stimulation, antiviral, antifungal, anti-inflammatory and antiparasitic. Based on this, usnic acid is used as the lead compound for structural modification. In order to enhance the biological activity and solubility of usnic acid, scholars have carried out a large number of structural modifications, and found some usnic acid derivatives to be of more potential research value. In this paper, the structural modification, biological activity and structure-activity relationship of usnic acid were reviewed to provide reference for the development of usnic acid derivatives.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
松萝酸衍生物的生物活性和结构-活性关系:综述。
鸟苷酸具有多种生物活性,在抗菌、免疫刺激、抗病毒、抗真菌、抗炎和抗寄生虫等领域被广泛研究。在此基础上,人们将 usnic 酸作为结构修饰的先导化合物。为了提高烟酸的生物活性和溶解性,学者们进行了大量的结构修饰,发现一些烟酸衍生物更具有潜在的研究价值。本文综述了烟酸的结构修饰、生物活性和构效关系,为烟酸衍生物的开发提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1