Serum Protein Fishing for Machine Learning-Boosted Diagnostic Classification of Small Nodules of Lung

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2024-01-25 DOI:10.1021/acsnano.3c07217
Mengjie Wang, Xin Dai, Xu Yang, Baichuan Jin, Yueli Xie, Chenlu Xu, Qiqi liu, Lichao Wang, Lisha Ying, Weishan Lu, Qixun Chen, Ting Fu, Dan Su*, Yuan Liu* and Weihong Tan*, 
{"title":"Serum Protein Fishing for Machine Learning-Boosted Diagnostic Classification of Small Nodules of Lung","authors":"Mengjie Wang,&nbsp;Xin Dai,&nbsp;Xu Yang,&nbsp;Baichuan Jin,&nbsp;Yueli Xie,&nbsp;Chenlu Xu,&nbsp;Qiqi liu,&nbsp;Lichao Wang,&nbsp;Lisha Ying,&nbsp;Weishan Lu,&nbsp;Qixun Chen,&nbsp;Ting Fu,&nbsp;Dan Su*,&nbsp;Yuan Liu* and Weihong Tan*,&nbsp;","doi":"10.1021/acsnano.3c07217","DOIUrl":null,"url":null,"abstract":"<p >Diagnosis of benign and malignant small nodules of the lung remains an unmet clinical problem which is leading to serious false positive diagnosis and overtreatment. Here, we developed a serum protein fishing-based spectral library (ProteoFish) for data independent acquisition analysis and a machine learning-boosted protein panel for diagnosis of early Non-Small Cell Lung Cancer (NSCLC) and classification of benign and malignant small nodules. We established an extensive NSCLC protein bank consisting of 297 clinical subjects. After testing 5 feature extraction algorithms and six machine learning models, the Lasso algorithm for a 15-key protein panel selection and Random Forest was chosen for diagnostic classification. Our random forest classifier achieved 91.38% accuracy in benign and malignant small nodule diagnosis, which is superior to the existing clinical assays. By integrating with machine learning, the 15-key protein panel may provide insights to multiplexed protein biomarker fishing from serum for facile cancer screening and tackling the current clinical challenge in prospective diagnostic classification of small nodules of the lung.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"18 5","pages":"4038–4055"},"PeriodicalIF":15.8000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.3c07217","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Diagnosis of benign and malignant small nodules of the lung remains an unmet clinical problem which is leading to serious false positive diagnosis and overtreatment. Here, we developed a serum protein fishing-based spectral library (ProteoFish) for data independent acquisition analysis and a machine learning-boosted protein panel for diagnosis of early Non-Small Cell Lung Cancer (NSCLC) and classification of benign and malignant small nodules. We established an extensive NSCLC protein bank consisting of 297 clinical subjects. After testing 5 feature extraction algorithms and six machine learning models, the Lasso algorithm for a 15-key protein panel selection and Random Forest was chosen for diagnostic classification. Our random forest classifier achieved 91.38% accuracy in benign and malignant small nodule diagnosis, which is superior to the existing clinical assays. By integrating with machine learning, the 15-key protein panel may provide insights to multiplexed protein biomarker fishing from serum for facile cancer screening and tackling the current clinical challenge in prospective diagnostic classification of small nodules of the lung.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过血清蛋白钓鱼对肺部小结节进行机器学习增强诊断分类
肺部良性和恶性小结节的诊断仍是一个尚未解决的临床问题,这导致了严重的假阳性诊断和过度治疗。在此,我们开发了一个基于血清蛋白钓鱼的光谱库(ProteoFish),用于数据独立采集分析和机器学习增强蛋白面板,以诊断早期非小细胞肺癌(NSCLC)并对良性和恶性小结节进行分类。我们建立了一个广泛的 NSCLC 蛋白库,其中包括 297 个临床受试者。在测试了5种特征提取算法和6种机器学习模型后,我们选择了Lasso算法进行15键蛋白质面板选择,并选择随机森林进行诊断分类。我们的随机森林分类器在良性和恶性小结节诊断中的准确率达到 91.38%,优于现有的临床检测方法。通过与机器学习相结合,15-key 蛋白面板可为从血清中提取多重蛋白生物标记物提供见解,从而方便癌症筛查,并解决目前临床上对肺部小结节进行前瞻性诊断分类的难题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Two-Dimensional Material-Based Nanofluidic Devices and Their Applications Formation Cycle Control for Enhanced Structural Stability of Ni-Rich LiNixCoyMn1-x-yO2 Cathodes Attoampere Level Leakage Current in Chemical Vapor Deposition-Grown Monolayer MoS2 Dynamic Random-Access Memory in Trap-Assisted Tunneling Limit Surface and Interfacial Engineering for Multifunctional Nanocarbon Materials Multifaceted Catalytic Glucose Depletion and Reactive Oxygen Species-Scavenging Nanoenzyme Composite Hydrogel for Facilitating Diabetic Bone Regeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1