Feng Hou, Ruili Wang, See-Kiong Ng, Fangyi Zhu, Michael Witbrock, Steven F. Cahan, Lily Chen, Xiaoyun Jia
{"title":"Anisotropic span embeddings and the negative impact of higher-order inference for coreference resolution: An empirical analysis","authors":"Feng Hou, Ruili Wang, See-Kiong Ng, Fangyi Zhu, Michael Witbrock, Steven F. Cahan, Lily Chen, Xiaoyun Jia","doi":"10.1017/s1351324924000019","DOIUrl":null,"url":null,"abstract":"<p>Coreference resolution is the task of identifying and clustering mentions that refer to the same entity in a document. Based on state-of-the-art deep learning approaches, end-to-end coreference resolution considers all spans as candidate mentions and tackles mention detection and coreference resolution simultaneously. Recently, researchers have attempted to incorporate document-level context using higher-order inference (HOI) to improve end-to-end coreference resolution. However, HOI methods have been shown to have marginal or even negative impact on coreference resolution. In this paper, we reveal the reasons for the negative impact of HOI coreference resolution. Contextualized representations (e.g., those produced by BERT) for building span embeddings have been shown to be highly anisotropic. We show that HOI actually increases and thus worsens the anisotropy of span embeddings and makes it difficult to distinguish between related but distinct entities (e.g., <span>pilots</span> and <span>flight attendants</span>). Instead of using HOI, we propose two methods, Less-Anisotropic Internal Representations (LAIR) and Data Augmentation with Document Synthesis and Mention Swap (DSMS), to learn less-anisotropic span embeddings for coreference resolution. LAIR uses a linear aggregation of the first layer and the topmost layer of contextualized embeddings. DSMS generates more diversified examples of related but distinct entities by synthesizing documents and by mention swapping. Our experiments show that less-anisotropic span embeddings improve the performance significantly (+2.8 F1 gain on the OntoNotes benchmark) reaching new state-of-the-art performance on the GAP dataset.</p>","PeriodicalId":49143,"journal":{"name":"Natural Language Engineering","volume":"10 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Natural Language Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1017/s1351324924000019","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Coreference resolution is the task of identifying and clustering mentions that refer to the same entity in a document. Based on state-of-the-art deep learning approaches, end-to-end coreference resolution considers all spans as candidate mentions and tackles mention detection and coreference resolution simultaneously. Recently, researchers have attempted to incorporate document-level context using higher-order inference (HOI) to improve end-to-end coreference resolution. However, HOI methods have been shown to have marginal or even negative impact on coreference resolution. In this paper, we reveal the reasons for the negative impact of HOI coreference resolution. Contextualized representations (e.g., those produced by BERT) for building span embeddings have been shown to be highly anisotropic. We show that HOI actually increases and thus worsens the anisotropy of span embeddings and makes it difficult to distinguish between related but distinct entities (e.g., pilots and flight attendants). Instead of using HOI, we propose two methods, Less-Anisotropic Internal Representations (LAIR) and Data Augmentation with Document Synthesis and Mention Swap (DSMS), to learn less-anisotropic span embeddings for coreference resolution. LAIR uses a linear aggregation of the first layer and the topmost layer of contextualized embeddings. DSMS generates more diversified examples of related but distinct entities by synthesizing documents and by mention swapping. Our experiments show that less-anisotropic span embeddings improve the performance significantly (+2.8 F1 gain on the OntoNotes benchmark) reaching new state-of-the-art performance on the GAP dataset.
期刊介绍:
Natural Language Engineering meets the needs of professionals and researchers working in all areas of computerised language processing, whether from the perspective of theoretical or descriptive linguistics, lexicology, computer science or engineering. Its aim is to bridge the gap between traditional computational linguistics research and the implementation of practical applications with potential real-world use. As well as publishing research articles on a broad range of topics - from text analysis, machine translation, information retrieval and speech analysis and generation to integrated systems and multi modal interfaces - it also publishes special issues on specific areas and technologies within these topics, an industry watch column and book reviews.