Magnetic Field Enabled Ultrahigh-Rate Zn Metal Anodes

IF 9 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Materials Today Energy Pub Date : 2024-01-24 DOI:10.1016/j.mtener.2024.101509
Yizhou Wang, Chen Liu, Jianyu Chen, Tianchao Guo, Zhengnan Tian, Zhiming Zhao, Yunpei Zhu, Xixiang Zhang, Jin Zhao, Yanwen Ma, Husam N. Alshareef
{"title":"Magnetic Field Enabled Ultrahigh-Rate Zn Metal Anodes","authors":"Yizhou Wang, Chen Liu, Jianyu Chen, Tianchao Guo, Zhengnan Tian, Zhiming Zhao, Yunpei Zhu, Xixiang Zhang, Jin Zhao, Yanwen Ma, Husam N. Alshareef","doi":"10.1016/j.mtener.2024.101509","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn-based flow batteries receive tremendous attention toward future grid-scale energy storage, but the uncontrollable dendrite growth and limited plating current density at the Zn anode severely hinder their application prospects. Herein, we realize non-dendritic Zn growth at an ultrahigh current density of 100 mA cm<sup>-2</sup> via the application of an external magnetic field. Through in-situ observation, morphology characterization, and electrochemical performance explorations, we find that the magnetic field can effectively inhibit the savage growth of dendrites. We believe this work can provide new inspiration for high-rate Zn metal anode research and promote the future applications of Zn-based flow batteries.</p>","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"198 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2024.101509","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn-based flow batteries receive tremendous attention toward future grid-scale energy storage, but the uncontrollable dendrite growth and limited plating current density at the Zn anode severely hinder their application prospects. Herein, we realize non-dendritic Zn growth at an ultrahigh current density of 100 mA cm-2 via the application of an external magnetic field. Through in-situ observation, morphology characterization, and electrochemical performance explorations, we find that the magnetic field can effectively inhibit the savage growth of dendrites. We believe this work can provide new inspiration for high-rate Zn metal anode research and promote the future applications of Zn-based flow batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场驱动的超高速锌金属阳极
基于锌的水基液流电池在未来电网规模的能源存储方面受到极大关注,但锌阳极不可控的枝晶生长和有限的电镀电流密度严重阻碍了其应用前景。在本文中,我们通过施加外部磁场,在 100 mA cm-2 的超高电流密度下实现了非树枝状锌生长。通过原位观察、形态表征和电化学性能探索,我们发现磁场能有效抑制树枝状的野蛮生长。我们相信这项工作能为高倍率锌金属阳极的研究提供新的启发,并促进锌基液流电池的未来应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today Energy
Materials Today Energy Materials Science-Materials Science (miscellaneous)
CiteScore
15.10
自引率
7.50%
发文量
291
审稿时长
15 days
期刊介绍: Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy. Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials. Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to: -Solar energy conversion -Hydrogen generation -Photocatalysis -Thermoelectric materials and devices -Materials for nuclear energy applications -Materials for Energy Storage -Environment protection -Sustainable and green materials
期刊最新文献
Magnetic field-augmented photoelectrochemical water splitting in Co3O4 and NiO nanorod arrays Evolution from passive to active components in lithium metal and lithium-ion batteries separators Prolonging rechargeable aluminum batteries life with flexible ceramic separator Efficient hole transport layers for silicon heterojunction solar cells by surface plasmonic modification in MoOx/Au NPs/MoOx stacks Self-powered sensors utilizing single-pillar thermocells with pyrolytic graphite sheet electrodes: harvesting body heat and solar thermal energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1