Jin Han, Yun-feng Ren, Alessandro Brighente, Mauro Conti
{"title":"RANGO: A Novel Deep Learning Approach to Detect Drones Disguising from Video Surveillance Systems","authors":"Jin Han, Yun-feng Ren, Alessandro Brighente, Mauro Conti","doi":"10.1145/3641282","DOIUrl":null,"url":null,"abstract":"<p>Video surveillance systems provide means to detect the presence of potentially malicious drones in the surroundings of critical infrastructures. In particular, these systems collect images and feed them to a deep-learning classifier able to detect the presence of a drone in the input image. However, current classifiers are not efficient in identifying drones that disguise themselves with the image background, e.g., hiding in front of a tree. Furthermore, video-based detection systems heavily rely on the image’s brightness, where darkness imposes significant challenges in detecting drones. Both these phenomena increase the possibilities for attackers to get close to critical infrastructures without being spotted and hence be able to gather sensitive information or cause physical damages, possibly leading to safety threats. </p><p>In this paper, we propose RANGO, a drone detection arithmetic able to detect drones in challenging images where the target is difficult to distinguish from the background. RANGO is based on a deep learning architecture that exploits a Preconditioning Operation (PREP) that highlights the target by the difference between the target gradient and the background gradient. The idea is to highlight features that will be useful for classification. After PREP, RANGO uses multiple convolution kernels to make the final decision on the presence of the drone. We test RANGO on a drone image dataset composed of multiple already existing datasets to which we add samples of birds and planes. We then compare RANGO with multiple currently existing approaches to show its superiority. When tested on images with disguising drones, RANGO attains an increase of \\(6.6\\% \\) mean Average Precision (mAP) compared to YOLOv5 solution. When tested on the conventional dataset, RANGO improves the mAP by approximately \\(2.2\\% \\), thus confirming its effectiveness also in the general scenario.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"152 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3641282","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Video surveillance systems provide means to detect the presence of potentially malicious drones in the surroundings of critical infrastructures. In particular, these systems collect images and feed them to a deep-learning classifier able to detect the presence of a drone in the input image. However, current classifiers are not efficient in identifying drones that disguise themselves with the image background, e.g., hiding in front of a tree. Furthermore, video-based detection systems heavily rely on the image’s brightness, where darkness imposes significant challenges in detecting drones. Both these phenomena increase the possibilities for attackers to get close to critical infrastructures without being spotted and hence be able to gather sensitive information or cause physical damages, possibly leading to safety threats.
In this paper, we propose RANGO, a drone detection arithmetic able to detect drones in challenging images where the target is difficult to distinguish from the background. RANGO is based on a deep learning architecture that exploits a Preconditioning Operation (PREP) that highlights the target by the difference between the target gradient and the background gradient. The idea is to highlight features that will be useful for classification. After PREP, RANGO uses multiple convolution kernels to make the final decision on the presence of the drone. We test RANGO on a drone image dataset composed of multiple already existing datasets to which we add samples of birds and planes. We then compare RANGO with multiple currently existing approaches to show its superiority. When tested on images with disguising drones, RANGO attains an increase of \(6.6\% \) mean Average Precision (mAP) compared to YOLOv5 solution. When tested on the conventional dataset, RANGO improves the mAP by approximately \(2.2\% \), thus confirming its effectiveness also in the general scenario.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.