End-to-End Models for Chemical-Protein Interaction Extraction: Better Tokenization and Span-Based Pipeline Strategies.

Xuguang Ai, Ramakanth Kavuluru
{"title":"End-to-End Models for Chemical-Protein Interaction Extraction: Better Tokenization and Span-Based Pipeline Strategies.","authors":"Xuguang Ai, Ramakanth Kavuluru","doi":"10.1109/ichi57859.2023.00108","DOIUrl":null,"url":null,"abstract":"<p><p>End-to-end relation extraction (E2ERE) is an important task in information extraction, more so for biomedicine as scientific literature continues to grow exponentially. E2ERE typically involves identifying entities (or named entity recognition (NER)) and associated relations, while most RE tasks simply assume that the entities are provided upfront and end up performing relation classification. E2ERE is inherently more difficult than RE alone given the potential snowball effect of errors from NER leading to more errors in RE. A complex dataset in biomedical E2ERE is the ChemProt dataset (BioCreative VI, 2017) that identifies relations between chemical compounds and genes/proteins in scientific literature. ChemProt is included in all recent biomedical natural language processing benchmarks including BLUE, BLURB, and BigBio. However, its treatment in these benchmarks and in other separate efforts is typically not end-to-end, with few exceptions. In this effort, we employ a span-based pipeline approach to produce a new state-of-the-art E2ERE performance on the ChemProt dataset, resulting in > 4% improvement in F1-score over the prior best effort. Our results indicate that a straightforward fine-grained tokenization scheme helps span-based approaches excel in E2ERE, especially with regards to handling complex named entities. Our error analysis also identifies a few key failure modes in E2ERE for ChemProt.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2023 ","pages":"610-618"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10809256/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi57859.2023.00108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2023/12/11 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

End-to-end relation extraction (E2ERE) is an important task in information extraction, more so for biomedicine as scientific literature continues to grow exponentially. E2ERE typically involves identifying entities (or named entity recognition (NER)) and associated relations, while most RE tasks simply assume that the entities are provided upfront and end up performing relation classification. E2ERE is inherently more difficult than RE alone given the potential snowball effect of errors from NER leading to more errors in RE. A complex dataset in biomedical E2ERE is the ChemProt dataset (BioCreative VI, 2017) that identifies relations between chemical compounds and genes/proteins in scientific literature. ChemProt is included in all recent biomedical natural language processing benchmarks including BLUE, BLURB, and BigBio. However, its treatment in these benchmarks and in other separate efforts is typically not end-to-end, with few exceptions. In this effort, we employ a span-based pipeline approach to produce a new state-of-the-art E2ERE performance on the ChemProt dataset, resulting in > 4% improvement in F1-score over the prior best effort. Our results indicate that a straightforward fine-grained tokenization scheme helps span-based approaches excel in E2ERE, especially with regards to handling complex named entities. Our error analysis also identifies a few key failure modes in E2ERE for ChemProt.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
化学-蛋白质相互作用提取的端到端模型:更好的标记化和基于跨度的管道策略
端到端关系提取(E2ERE)是信息提取中的一项重要任务,对于生物医学来说更是如此,因为科学文献仍在呈指数级增长。E2ERE 通常包括识别实体(或命名实体识别 (NER))和相关关系,而大多数 RE 任务只是假定实体已预先提供,并最终执行关系分类。由于命名实体识别中的错误可能会产生滚雪球效应,导致命名实体识别中出现更多错误,因此 E2ERE 本身就比 RE 更难。生物医学 E2ERE 中的一个复杂数据集是 ChemProt 数据集(BioCreative VI, 2017),该数据集用于识别科学文献中化合物与基因/蛋白质之间的关系。ChemProt 包含在最近所有的生物医学自然语言处理基准中,包括 BLUE、BLURB 和 BigBio。然而,在这些基准和其他单独的工作中,对 ChemProt 的处理通常不是端对端,只有少数例外。在这项研究中,我们采用了一种基于跨度的管道方法,在 ChemProt 数据集上实现了最先进的 E2ERE 性能,使 F1 分数比之前的最佳成绩提高了 4%。我们的结果表明,直接的细粒度标记化方案有助于基于跨度的方法在 E2ERE 中取得优异成绩,尤其是在处理复杂命名实体方面。我们的错误分析还发现了 E2ERE 在 ChemProt 中的一些关键故障模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. Evaluating Generative Models in Medical Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1