An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs.

Mattia Prosperi, Simone Marini, Christina Boucher
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length <ns0:math><ns0:mi>k</ns0:mi></ns0:math> between genome pairs.","authors":"Mattia Prosperi, Simone Marini, Christina Boucher","doi":"10.1109/ichi61247.2024.00020","DOIUrl":null,"url":null,"abstract":"<p><p>A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length <math><mi>k</mi></math> (ALCS- <math><mi>k</mi></math> ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- <math><mi>k</mi></math> for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- <math><mi>k</mi></math> problem has two additional requirements compared to the LCS problem: one is the minimum length <math><mi>k</mi></math> , and the other is that all common strings longer than <math><mi>k</mi></math> must be reported. We present an efficient, two-stage ALCS- <math><mi>k</mi></math> algorithm exploiting the spectrum of text substrings of length <math><mi>k</mi></math> ( <math><mi>k</mi></math> -mers). Our approach yields a worst-case time complexity loglinear in the number of <math><mi>k</mi></math> -mers for the first stage, and an average-case loglinear in the number of common <math><mi>k</mi></math> -mers for the second stage (several orders of magnitudes smaller than the total <math><mi>k</mi></math> -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"93-102"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412151/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ichi61247.2024.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length k (ALCS- k ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- k for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- k problem has two additional requirements compared to the LCS problem: one is the minimum length k , and the other is that all common strings longer than k must be reported. We present an efficient, two-stage ALCS- k algorithm exploiting the spectrum of text substrings of length k ( k -mers). Our approach yields a worst-case time complexity loglinear in the number of k -mers for the first stage, and an average-case loglinear in the number of common k -mers for the second stage (several orders of magnitudes smaller than the total k -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种平均情况下高效的两阶段算法,用于枚举基因组对之间最小长度为 k 的所有最长公共子串。
两个文本之间最长公共子串(LCS)问题的扩展是枚举给定最小长度 k 的所有 LCS(ALCS- k)以及它们在每个文本中的位置。在生物信息学中,针对超长文本--基因组或元基因组--的 ALCS- k 的有效解决方案可以为发现生物机制的遗传特征提供有用的见解。与 LCS 问题相比,ALCS- k 问题有两个额外的要求:一个是最小长度 k,另一个是必须报告所有长于 k 的普通字符串。我们提出了一种高效的两阶段 ALCS- k 算法,该算法利用了长度为 k 的文本子串谱(k -mers)。我们的方法在最坏情况下,第一阶段的时间复杂度与 k -mers 的数量成对数线性关系,在平均情况下,第二阶段的时间复杂度与常见 k -mers 的数量成对数线性关系(比总 k -mers 频谱小几个数量级)。空间复杂度在第一阶段(基于磁盘)是线性的,在第二阶段(基于磁盘和内存)平均是线性的。在不同生物体(包括病毒、细菌和动物染色体)基因组上进行的测试表明,运行时间与我们的理论估计值一致;此外,与 MUMmer4 的比较显示,在不同基因组上具有渐进优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. Evaluating Generative Models in Medical Imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1