首页 > 最新文献

IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics最新文献

英文 中文
Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data. 基于注意力的电子健康记录表格数据缺失值估算。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00030
Ibna Kowsar, Shourav B Rabbani, Manar D Samad

The imputation of missing values (IMV) in electronic health records tabular data is crucial to enable machine learning for patient-specific predictive modeling. While IMV methods are developed in biostatistics and recently in machine learning, deep learning-based solutions have shown limited success in learning tabular data. This paper proposes a novel attention-based missing value imputation framework that learns to reconstruct data with missing values leveraging between-feature (self-attention) or between-sample attentions. We adopt data manipulation methods used in contrastive learning to improve the generalization of the trained imputation model. The proposed self-attention imputation method outperforms state-of-the-art statistical and machine learning-based (decision-tree) imputation methods, reducing the normalized root mean squared error by 18.4% to 74.7% on five tabular data sets and 52.6% to 82.6% on two electronic health records data sets. The proposed attention-based missing value imputation method shows superior performance across a wide range of missingness (10% to 50%) when the values are missing completely at random.

电子健康记录表格数据中缺失值的估算(IMV)对于机器学习进行特定患者预测建模至关重要。虽然生物统计学和最近的机器学习领域都开发了缺失值估算方法,但基于深度学习的解决方案在学习表格数据方面的成功率有限。本文提出了一种新颖的基于注意力的缺失值估算框架,它能利用特征间(自我注意力)或样本间注意力学习重建缺失值数据。我们采用了对比学习中使用的数据处理方法,以提高训练有素的估算模型的泛化能力。所提出的自我注意力估算方法优于最先进的统计和基于机器学习(决策树)的估算方法,在五个表格数据集上将归一化均方根误差降低了 18.4% 到 74.7%,在两个电子健康记录数据集上将归一化均方根误差降低了 52.6% 到 82.6%。当数值完全随机缺失时,所提出的基于注意力的缺失值估算方法在很大的缺失率范围(10% 到 50%)内都表现出了卓越的性能。
{"title":"Attention-based Imputation of Missing Values in Electronic Health Records Tabular Data.","authors":"Ibna Kowsar, Shourav B Rabbani, Manar D Samad","doi":"10.1109/ichi61247.2024.00030","DOIUrl":"10.1109/ichi61247.2024.00030","url":null,"abstract":"<p><p>The imputation of missing values (IMV) in electronic health records tabular data is crucial to enable machine learning for patient-specific predictive modeling. While IMV methods are developed in biostatistics and recently in machine learning, deep learning-based solutions have shown limited success in learning tabular data. This paper proposes a novel attention-based missing value imputation framework that learns to reconstruct data with missing values leveraging between-feature (self-attention) or between-sample attentions. We adopt data manipulation methods used in contrastive learning to improve the generalization of the trained imputation model. The proposed self-attention imputation method outperforms state-of-the-art statistical and machine learning-based (decision-tree) imputation methods, reducing the normalized root mean squared error by 18.4% to 74.7% on five tabular data sets and 52.6% to 82.6% on two electronic health records data sets. The proposed attention-based missing value imputation method shows superior performance across a wide range of missingness (10% to 50%) when the values are missing completely at random.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"177-182"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11463999/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142395730","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging Professional Radiologists' Expertise to Enhance LLMs' Evaluation for AI-generated Radiology Reports. 利用专业放射学专家的专业知识,加强法律硕士对人工智能生成的放射学报告的评估。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00058
Qingqing Zhu, Xiuying Chen, Qiao Jin, Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee, Xin Gao, Ronald M Summers, Zhiyong Lu

In radiology, Artificial Intelligence (AI) has significantly advanced report generation, but automatic evaluation of these AI-produced reports remains challenging. Current metrics, such as Conventional Natural Language Generation (NLG) and Clinical Efficacy (CE), often fall short in capturing the semantic intricacies of clinical contexts or overemphasize clinical details, undermining report clarity. To overcome these issues, our proposed method synergizes the expertise of professional radiologists with Large Language Models (LLMs), like GPT-3.5 and GPT-4. Utilizing In-Context Instruction Learning (ICIL) and Chain of Thought (CoT) reasoning, our approach aligns LLM evaluations with radiologist standards, enabling detailed comparisons between human and AI-generated reports. This is further enhanced by a Regression model that aggregates sentence evaluation scores. Experimental results show that our "Detailed GPT-4 (5-shot)" model achieves a correlation that is 0.48, outperforming the METEOR metric by 0.19, while our "Regressed GPT-4" model shows even greater alignment(0.64) with expert evaluations, exceeding the best existing metric by a 0.35 margin. Moreover, the robustness of our explanations has been validated through a thorough iterative strategy. We plan to publicly release annotations from radiology experts, setting a new standard for accuracy in future assessments. This underscores the potential of our approach in enhancing the quality assessment of AI-driven medical reports.

在放射学中,人工智能(AI)在报告生成方面取得了显著进展,但对这些人工智能生成的报告进行自动评估仍然具有挑战性。目前的指标,如常规自然语言生成(NLG)和临床疗效(CE),往往在捕捉临床上下文的语义复杂性或过分强调临床细节方面不足,破坏了报告的清晰度。为了克服这些问题,我们提出的方法将专业放射科医生的专业知识与大型语言模型(llm)(如GPT-3.5和GPT-4)相结合。利用情境教学(ICIL)和思维链(CoT)推理,我们的方法将LLM评估与放射科医生的标准保持一致,从而可以详细比较人类和人工智能生成的报告。这是进一步增强的回归模型,汇总句子评价分数。实验结果表明,我们的“详细GPT-4 (5-shot)”模型实现了0.48的相关性,比METEOR指标高出0.19,而我们的“回归GPT-4”模型与专家评估的一致性更高(0.64),比现有的最佳指标高出0.35。此外,我们的解释的健壮性已经通过一个彻底的迭代策略得到了验证。我们计划公开发布放射学专家的注释,为未来评估的准确性制定新的标准。这凸显了我们的方法在加强人工智能驱动的医疗报告的质量评估方面的潜力。
{"title":"Leveraging Professional Radiologists' Expertise to Enhance LLMs' Evaluation for AI-generated Radiology Reports.","authors":"Qingqing Zhu, Xiuying Chen, Qiao Jin, Benjamin Hou, Tejas Sudharshan Mathai, Pritam Mukherjee, Xin Gao, Ronald M Summers, Zhiyong Lu","doi":"10.1109/ichi61247.2024.00058","DOIUrl":"10.1109/ichi61247.2024.00058","url":null,"abstract":"<p><p>In radiology, Artificial Intelligence (AI) has significantly advanced report generation, but automatic evaluation of these AI-produced reports remains challenging. Current metrics, such as Conventional Natural Language Generation (NLG) and Clinical Efficacy (CE), often fall short in capturing the semantic intricacies of clinical contexts or overemphasize clinical details, undermining report clarity. To overcome these issues, our proposed method synergizes the expertise of professional radiologists with Large Language Models (LLMs), like GPT-3.5 and GPT-4. Utilizing In-Context Instruction Learning (ICIL) and Chain of Thought (CoT) reasoning, our approach aligns LLM evaluations with radiologist standards, enabling detailed comparisons between human and AI-generated reports. This is further enhanced by a Regression model that aggregates sentence evaluation scores. Experimental results show that our \"Detailed GPT-4 (5-shot)\" model achieves a correlation that is 0.48, outperforming the METEOR metric by 0.19, while our \"Regressed GPT-4\" model shows even greater alignment(0.64) with expert evaluations, exceeding the best existing metric by a 0.35 margin. Moreover, the robustness of our explanations has been validated through a thorough iterative strategy. We plan to publicly release annotations from radiology experts, setting a new standard for accuracy in future assessments. This underscores the potential of our approach in enhancing the quality assessment of AI-driven medical reports.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"402-411"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11651630/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142848618","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing. 用自然语言处理从临床叙述中识别谵妄症状
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00046
Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu

Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.

谵妄是注意力、意识或其他认知功能的急性下降或波动,可导致严重的不良后果。尽管谵妄的后果严重,但由于其短暂性和多样性,谵妄在患者的电子健康记录(EHRs)中经常未被识别和未编码。自然语言处理(NLP)是一项从临床叙述中提取医学概念的关键技术,在谵妄结局和症状的研究中显示出巨大的潜力。为了帮助谵妄的诊断和分型,我们组建了专家小组对谵妄的多种症状进行分类,编写了注释指南,创建了包含多种谵妄症状的谵妄语料库,并开发了从临床记录中提取谵妄症状的NLP方法。我们比较了5种最先进的变压器模型,其中2种模型(BERT和RoBERTa)来自一般领域,3种模型(BERT_MIMIC, RoBERTa_MIMIC和GatorTron)来自临床领域。GatorTron在严格F1和宽松F1中得分最高,分别为0.8055和0.8759。我们进行了错误分析,以确定在注释谵妄症状和开发NLP系统方面的挑战。据我们所知,这是第一个基于语言模型的谵妄症状提取系统。本研究为今后谵妄的可计算表型和诊断方法的发展奠定了基础。
{"title":"Identifying Symptoms of Delirium from Clinical Narratives Using Natural Language Processing.","authors":"Aokun Chen, Daniel Paredes, Zehao Yu, Xiwei Lou, Roberta Brunson, Jamie N Thomas, Kimberly A Martinez, Robert J Lucero, Tanja Magoc, Laurence M Solberg, Urszula A Snigurska, Sarah E Ser, Mattia Prosperi, Jiang Bian, Ragnhildur I Bjarnadottir, Yonghui Wu","doi":"10.1109/ichi61247.2024.00046","DOIUrl":"10.1109/ichi61247.2024.00046","url":null,"abstract":"<p><p>Delirium is an acute decline or fluctuation in attention, awareness, or other cognitive function that can lead to serious adverse outcomes. Despite the severe outcomes, delirium is frequently unrecognized and uncoded in patients' electronic health records (EHRs) due to its transient and diverse nature. Natural language processing (NLP), a key technology that extracts medical concepts from clinical narratives, has shown great potential in studies of delirium outcomes and symptoms. To assist in the diagnosis and phenotyping of delirium, we formed an expert panel to categorize diverse delirium symptoms, composed annotation guidelines, created a delirium corpus with diverse delirium symptoms, and developed NLP methods to extract delirium symptoms from clinical notes. We compared 5 state-of-the-art transformer models including 2 models (BERT and RoBERTa) from the general domain and 3 models (BERT_MIMIC, RoBERTa_MIMIC, and GatorTron) from the clinical domain. GatorTron achieved the best strict and lenient F1 scores of 0.8055 and 0.8759, respectively. We conducted an error analysis to identify challenges in annotating delirium symptoms and developing NLP systems. To the best of our knowledge, this is the first large language model-based delirium symptom extraction system. Our study lays the foundation for the future development of computable phenotypes and diagnosis methods for delirium.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"305-311"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning to Rank Complex Biomedical Hypotheses for Accelerating Scientific Discovery.
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00044
Juncheng Ding, Shailesh Dahal, Bijaya Adhikari, Kishlay Jha

Hypothesis generation (HG) is a fundamental problem in biomedical text mining that uncovers plausible implicit links ( B terms) between two disjoint concepts of interest ( A and C terms). Over the past decade, many HG approaches based on distributional statistics, graph-theoretic measures, and supervised machine learning methods have been proposed. Despite significant advances made, the existing approaches have two major limitations. First, they mainly focus on enumerating hypotheses and often neglect to rank them in a semantically meaningful way. This leads to wasted time and resources as researchers may focus on hypotheses that are ultimately not supported by experimental evidence. Second, the existing approaches are designed to rank hypotheses with only one intermediate or evidence term (referred as simple hypotheses), and thus are unable to handle hypotheses with multiple intermediate terms (referred as complex hypotheses). This is limiting because recent research has shown that the complex hypotheses could be of greater practical value than simple ones, especially in the early stages of scientific discovery. To address these issues, we propose a new HG ranking approach that leverages upon the expressive power of Graph Neural Networks (GNN) coupled with a domain-knowledge guided Noise-Contrastive Estimation (NCE) strategy to effectively rank both simple and complex biomedical hypotheses. Specifically, the message passing capabilities of GNN allows our approach to capture the rich interactions between biomedical entities and succinctly handle the complex hypotheses with variable intermediate terms. Moreover, the proposed domain knowledge-guided NCE strategy enables the ranking of complex hypotheses based on their coherence with the established biomedical knowledge. Extensive experiment results on five recognized biomedical datasets show that the proposed approach consistently outperforms the existing baselines and prioritizes hypotheses worthy of potential clinical trials.

{"title":"Learning to Rank Complex Biomedical Hypotheses for Accelerating Scientific Discovery.","authors":"Juncheng Ding, Shailesh Dahal, Bijaya Adhikari, Kishlay Jha","doi":"10.1109/ichi61247.2024.00044","DOIUrl":"10.1109/ichi61247.2024.00044","url":null,"abstract":"<p><p>Hypothesis generation (HG) is a fundamental problem in biomedical text mining that uncovers plausible implicit links ( <math><mi>B</mi></math> terms) between two disjoint concepts of interest ( <math><mi>A</mi></math> and <math><mi>C</mi></math> terms). Over the past decade, many HG approaches based on distributional statistics, graph-theoretic measures, and supervised machine learning methods have been proposed. Despite significant advances made, the existing approaches have two major limitations. First, they mainly focus on enumerating hypotheses and often neglect to rank them in a semantically meaningful way. This leads to wasted time and resources as researchers may focus on hypotheses that are ultimately not supported by experimental evidence. Second, the existing approaches are designed to rank hypotheses with only one intermediate or evidence term (referred as simple hypotheses), and thus are unable to handle hypotheses with multiple intermediate terms (referred as complex hypotheses). This is limiting because recent research has shown that the complex hypotheses could be of greater practical value than simple ones, especially in the early stages of scientific discovery. To address these issues, we propose a new HG ranking approach that leverages upon the expressive power of Graph Neural Networks (GNN) coupled with a domain-knowledge guided Noise-Contrastive Estimation (NCE) strategy to effectively rank both simple and complex biomedical hypotheses. Specifically, the message passing capabilities of GNN allows our approach to capture the rich interactions between biomedical entities and succinctly handle the complex hypotheses with variable intermediate terms. Moreover, the proposed domain knowledge-guided NCE strategy enables the ranking of complex hypotheses based on their coherence with the established biomedical knowledge. Extensive experiment results on five recognized biomedical datasets show that the proposed approach consistently outperforms the existing baselines and prioritizes hypotheses worthy of potential clinical trials.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"285-293"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11920884/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143665495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length k between genome pairs. 一种平均情况下高效的两阶段算法,用于枚举基因组对之间最小长度为 k 的所有最长公共子串。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00020
Mattia Prosperi, Simone Marini, Christina Boucher

A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length k (ALCS- k ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- k for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- k problem has two additional requirements compared to the LCS problem: one is the minimum length k , and the other is that all common strings longer than k must be reported. We present an efficient, two-stage ALCS- k algorithm exploiting the spectrum of text substrings of length k ( k -mers). Our approach yields a worst-case time complexity loglinear in the number of k -mers for the first stage, and an average-case loglinear in the number of common k -mers for the second stage (several orders of magnitudes smaller than the total k -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.

两个文本之间最长公共子串(LCS)问题的扩展是枚举给定最小长度 k 的所有 LCS(ALCS- k)以及它们在每个文本中的位置。在生物信息学中,针对超长文本--基因组或元基因组--的 ALCS- k 的有效解决方案可以为发现生物机制的遗传特征提供有用的见解。与 LCS 问题相比,ALCS- k 问题有两个额外的要求:一个是最小长度 k,另一个是必须报告所有长于 k 的普通字符串。我们提出了一种高效的两阶段 ALCS- k 算法,该算法利用了长度为 k 的文本子串谱(k -mers)。我们的方法在最坏情况下,第一阶段的时间复杂度与 k -mers 的数量成对数线性关系,在平均情况下,第二阶段的时间复杂度与常见 k -mers 的数量成对数线性关系(比总 k -mers 频谱小几个数量级)。空间复杂度在第一阶段(基于磁盘)是线性的,在第二阶段(基于磁盘和内存)平均是线性的。在不同生物体(包括病毒、细菌和动物染色体)基因组上进行的测试表明,运行时间与我们的理论估计值一致;此外,与 MUMmer4 的比较显示,在不同基因组上具有渐进优势。
{"title":"<ArticleTitle xmlns:ns0=\"http://www.w3.org/1998/Math/MathML\">An average-case efficient two-stage algorithm for enumerating all longest common substrings of minimum length <ns0:math><ns0:mi>k</ns0:mi></ns0:math> between genome pairs.","authors":"Mattia Prosperi, Simone Marini, Christina Boucher","doi":"10.1109/ichi61247.2024.00020","DOIUrl":"10.1109/ichi61247.2024.00020","url":null,"abstract":"<p><p>A problem extension of the longest common substring (LCS) between two texts is the enumeration of all LCSs given a minimum length <math><mi>k</mi></math> (ALCS- <math><mi>k</mi></math> ), along with their positions in each text. In bioinformatics, an efficient solution to the ALCS- <math><mi>k</mi></math> for very long texts -genomes or metagenomes- can provide useful insights to discover genetic signatures responsible for biological mechanisms. The ALCS- <math><mi>k</mi></math> problem has two additional requirements compared to the LCS problem: one is the minimum length <math><mi>k</mi></math> , and the other is that all common strings longer than <math><mi>k</mi></math> must be reported. We present an efficient, two-stage ALCS- <math><mi>k</mi></math> algorithm exploiting the spectrum of text substrings of length <math><mi>k</mi></math> ( <math><mi>k</mi></math> -mers). Our approach yields a worst-case time complexity loglinear in the number of <math><mi>k</mi></math> -mers for the first stage, and an average-case loglinear in the number of common <math><mi>k</mi></math> -mers for the second stage (several orders of magnitudes smaller than the total <math><mi>k</mi></math> -mer spectrum). The space complexity is linear in the first phase (disk-based), and on average linear in the second phase (disk- and memory-based). Tests performed on genomes for different organisms (including viruses, bacteria and animal chromosomes) show that run times are consistent with our theoretical estimates; further, comparisons with MUMmer4 show an asymptotic advantage with divergent genomes.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"93-102"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11412151/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142302596","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assertion Detection in Clinical Natural Language Processing using Large Language Models.
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00039
Yuelyu Ji, Zeshui Yu, Yanshan Wang

In this study, we aim to address the task of assertion detection when extracting medical concepts from clinical notes, a key process in clinical natural language processing (NLP). Assertion detection in clinical NLP usually involves identifying assertion types for medical concepts in the clinical text, namely certainty (whether the medical concept is positive, negated, possible, or hypothetical), temporality (whether the medical concept is for present or the past history), and experiencer (whether the medical concept is described for the patient or a family member). These assertion types are essential for healthcare professionals to quickly and clearly understand the context of medical conditions from unstructured clinical texts, directly influencing the quality and outcomes of patient care. Although widely used, traditional methods, particularly rule-based NLP systems and machine learning or deep learning models, demand intensive manual efforts to create patterns and tend to overlook less common assertion types, leading to an incomplete understanding of the context. To address this challenge, our research introduces a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection. We enhanced the current method with advanced reasoning techniques, including Tree of Thought (ToT), Chain of Thought (CoT), and Self-Consistency (SC), and refine it further with Low-Rank Adaptation (LoRA) fine-tuning. We first evaluated the model on the i2b2 2010 assertion dataset. Our method achieved a micro-averaged F-1 of 0.89, with 0.11 improvements over the previous works. To further assess the generalizability of our approach, we extended our evaluation to a local dataset that focused on sleep concept extraction. Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method. The results show that using LLMs is a viable option for assertion detection in clinical NLP and can potentially integrate with other LLM-based concept extraction models for clinical NLP tasks.

{"title":"Assertion Detection in Clinical Natural Language Processing using Large Language Models.","authors":"Yuelyu Ji, Zeshui Yu, Yanshan Wang","doi":"10.1109/ichi61247.2024.00039","DOIUrl":"10.1109/ichi61247.2024.00039","url":null,"abstract":"<p><p>In this study, we aim to address the task of assertion detection when extracting medical concepts from clinical notes, a key process in clinical natural language processing (NLP). Assertion detection in clinical NLP usually involves identifying assertion types for medical concepts in the clinical text, namely certainty (whether the medical concept is positive, negated, possible, or hypothetical), temporality (whether the medical concept is for present or the past history), and experiencer (whether the medical concept is described for the patient or a family member). These assertion types are essential for healthcare professionals to quickly and clearly understand the context of medical conditions from unstructured clinical texts, directly influencing the quality and outcomes of patient care. Although widely used, traditional methods, particularly rule-based NLP systems and machine learning or deep learning models, demand intensive manual efforts to create patterns and tend to overlook less common assertion types, leading to an incomplete understanding of the context. To address this challenge, our research introduces a novel methodology that utilizes Large Language Models (LLMs) pre-trained on a vast array of medical data for assertion detection. We enhanced the current method with advanced reasoning techniques, including Tree of Thought (ToT), Chain of Thought (CoT), and Self-Consistency (SC), and refine it further with Low-Rank Adaptation (LoRA) fine-tuning. We first evaluated the model on the i2b2 2010 assertion dataset. Our method achieved a micro-averaged F-1 of 0.89, with 0.11 improvements over the previous works. To further assess the generalizability of our approach, we extended our evaluation to a local dataset that focused on sleep concept extraction. Our approach achieved an F-1 of 0.74, which is 0.31 higher than the previous method. The results show that using LLMs is a viable option for assertion detection in clinical NLP and can potentially integrate with other LLM-based concept extraction models for clinical NLP tasks.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"242-247"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11908446/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case. 使用基于开放本体的方法开发人类体育活动和运动的计算表征:太极使用案例。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00012
Eloisa Nguyen, Rebecca Z Lin, Yang Gong, Cui Tao, Muhammad Tuan Amith

Many studies have examined the impact of exercise and other physical activities in influencing the health outcomes of individuals. These physical activities entail an intricate sequence and series of physical anatomy, physiological movement, movement of the anatomy, etc. To better understand how these components interact with one another and their downstream impact on health outcomes, there needs to be an information model that conceptualizes all entities involved. In this study, we introduced our early development of an ontology model to computationally describe human physical activities and the various entities that compose each activity. We developed an open-sourced biomedical ontology called the Kinetic Human Movement Ontology that reused OBO Foundry terminologies and encoded in OWL2. We applied this ontology in modeling and linking a specific Tai Chi movement. The contribution of this work could enable modeling of information relating to human physical activity, like exercise, and lead towards information standardization of human movement for analysis. Future work will include expanding our ontology to include more expressive information and completely modeling entire sets of movement from human physical activity.

许多研究都探讨了运动和其他体育活动对个人健康结果的影响。这些体能活动包含一系列错综复杂的物理解剖、生理运动、解剖运动等。为了更好地理解这些组成部分之间如何相互作用以及它们对健康结果的下游影响,需要有一个信息模型来概念化所涉及的所有实体。在本研究中,我们介绍了我们早期开发的本体模型,该模型用于计算描述人类的身体活动以及构成每项活动的各种实体。我们开发了一个开源的生物医学本体,名为 "人体运动本体"(Kinetic Human Movement Ontology),该本体重复使用了 OBO Foundry 术语,并用 OWL2 进行了编码。我们将该本体应用于特定太极运动的建模和链接。这项工作的贡献在于能够对与人类身体活动(如运动)相关的信息进行建模,并实现人类运动分析的信息标准化。未来的工作将包括扩展我们的本体,以包含更具表现力的信息,并对人类体育活动的整套动作进行完全建模。
{"title":"Developing a computational representation of human physical activity and exercise using open ontology-based approach: a Tai Chi use case.","authors":"Eloisa Nguyen, Rebecca Z Lin, Yang Gong, Cui Tao, Muhammad Tuan Amith","doi":"10.1109/ichi61247.2024.00012","DOIUrl":"10.1109/ichi61247.2024.00012","url":null,"abstract":"<p><p>Many studies have examined the impact of exercise and other physical activities in influencing the health outcomes of individuals. These physical activities entail an intricate sequence and series of physical anatomy, physiological movement, movement of the anatomy, etc. To better understand how these components interact with one another and their downstream impact on health outcomes, there needs to be an information model that conceptualizes all entities involved. In this study, we introduced our early development of an ontology model to computationally describe human physical activities and the various entities that compose each activity. We developed an open-sourced biomedical ontology called the Kinetic Human Movement Ontology that reused OBO Foundry terminologies and encoded in OWL2. We applied this ontology in modeling and linking a specific Tai Chi movement. The contribution of this work could enable modeling of information relating to human physical activity, like exercise, and lead towards information standardization of human movement for analysis. Future work will include expanding our ontology to include more expressive information and completely modeling entire sets of movement from human physical activity.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"31-39"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11503552/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142514161","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups. 分析社会因素,加强不同人群的自杀预防。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00032
Richard Li Xu, Song Wang, Zewei Wang, Yuhan Zhang, Yunyu Xiao, Jyotishman Pathak, David Hodge, Yan Leng, S Craig Watkins, Ying Ding, Yifan Peng

Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suicide-related social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions.

家庭背景、教育水平、经济状况和压力等社会因素会对自杀意念等公共卫生结果产生影响。然而,由于缺乏最新的自杀报告数据、报告方法的差异以及样本量较小,对预防自杀的社会因素的分析一直受到限制。在本研究中,我们利用国家暴力死亡报告系统限制访问数据库(NVDRS-RAD)分析了 2014 年至 2020 年期间的 172629 起自杀事件。我们建立了逻辑回归模型来研究人口统计学与自杀相关情况之间的关系。对随时间变化的趋势进行了评估,并使用 Latent Dirichlet Allocation (LDA) 来识别常见的自杀相关社会因素。心理健康、人际关系、心理健康治疗和披露以及与学校/工作相关的压力因素被确定为与自杀相关的社会因素的主要主题。这项研究还发现了不同人群中存在的系统性差异,尤其是黑人、24 岁以下的年轻人、医护人员和教育背景有限的人群,这为针对特定人群的自杀干预措施提供了潜在的方向。
{"title":"Analyzing Social Factors to Enhance Suicide Prevention Across Population Groups.","authors":"Richard Li Xu, Song Wang, Zewei Wang, Yuhan Zhang, Yunyu Xiao, Jyotishman Pathak, David Hodge, Yan Leng, S Craig Watkins, Ying Ding, Yifan Peng","doi":"10.1109/ichi61247.2024.00032","DOIUrl":"10.1109/ichi61247.2024.00032","url":null,"abstract":"<p><p>Social factors like family background, education level, financial status, and stress can impact public health outcomes, such as suicidal ideation. However, the analysis of social factors for suicide prevention has been limited by the lack of up-to-date suicide reporting data, variations in reporting practices, and small sample sizes. In this study, we analyzed 172,629 suicide incidents from 2014 to 2020 utilizing the National Violent Death Reporting System Restricted Access Database (NVDRS-RAD). Logistic regression models were developed to examine the relationships between demographics and suicide-related circumstances. Trends over time were assessed, and Latent Dirichlet Allocation (LDA) was used to identify common suicide-related social factors. Mental health, interpersonal relationships, mental health treatment and disclosure, and school/work-related stressors were identified as the main themes of suicide-related social factors. This study also identified systemic disparities across various population groups, particularly concerning Black individuals, young people aged under 24, healthcare practitioners, and those with limited education backgrounds, which shed light on potential directions for demographic-specific suicidal interventions.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"189-199"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11450796/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142382637","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines.
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00111
David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit Kapoor, Shravan Kooragayalu, Katelyn Polanska, Yanshan Wang

Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, approaches for incorporating CPGs into LLMs are not well studied. In this study, we develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP), and focus on CDS for COVID-19 outpatient treatment as the case study. Zero-Shot Prompting (ZSP) is our baseline method. To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrate high performance in human evaluation. LLMs enhanced with CPGs outperform plain LLMs with ZSP in providing accurate recommendations for COVID-19 outpatient treatment, highlighting the potential for broader applications beyond the case study.

{"title":"Enhancing Large Language Models for Clinical Decision Support by Incorporating Clinical Practice Guidelines.","authors":"David Oniani, Xizhi Wu, Shyam Visweswaran, Sumit Kapoor, Shravan Kooragayalu, Katelyn Polanska, Yanshan Wang","doi":"10.1109/ichi61247.2024.00111","DOIUrl":"https://doi.org/10.1109/ichi61247.2024.00111","url":null,"abstract":"<p><p>Large Language Models (LLMs), enhanced with Clinical Practice Guidelines (CPGs), can significantly improve Clinical Decision Support (CDS). However, approaches for incorporating CPGs into LLMs are not well studied. In this study, we develop three distinct methods for incorporating CPGs into LLMs: Binary Decision Tree (BDT), Program-Aided Graph Construction (PAGC), and Chain-of-Thought-Few-Shot Prompting (CoT-FSP), and focus on CDS for COVID-19 outpatient treatment as the case study. Zero-Shot Prompting (ZSP) is our baseline method. To evaluate the effectiveness of the proposed methods, we create a set of synthetic patient descriptions and conduct both automatic and human evaluation of the responses generated by four LLMs: GPT-4, GPT-3.5 Turbo, LLaMA, and PaLM 2. All four LLMs exhibit improved performance when enhanced with CPGs compared to the baseline ZSP. BDT outperformed both CoT-FSP and PAGC in automatic evaluation. All of the proposed methods demonstrate high performance in human evaluation. LLMs enhanced with CPGs outperform plain LLMs with ZSP in providing accurate recommendations for COVID-19 outpatient treatment, highlighting the potential for broader applications beyond the case study.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"694-702"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11909794/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143652456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series. 不规则采样多变量临床时间序列的多任务深度神经网络。
Pub Date : 2024-06-01 Epub Date: 2024-08-22 DOI: 10.1109/ichi61247.2024.00025
Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian

Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks. This study aims to achieve more desirable imputation and prediction accuracy by performing both tasks simultaneously. We present a new multi-task deep neural network that incorporates the imputation task as an auxiliary task while performing risk prediction tasks. We validate the method on clinical time series imputation and in-hospital mortality prediction tasks using two publicly available EHR databases. The experimental results show that our method outperforms state-of-the-art imputation-prediction methods by significant margins. The results also empirically demonstrate that the incorporation of time decay mechanisms is a critical factor for superior imputation and prediction performance. The novel deep imputation-prediction network proposed in this study provides more accurate imputation and prediction results with EHR data. Future work should focus on developing more effective time decay mechanisms for simultaneously enhancing the imputation and prediction performance of multi-task learning models.

多变量临床时间序列数据,如电子健康记录(EHR)中包含的数据,通常表现出高度的不规则性,特别是许多缺失值和不同的时间间隔。现有方法通常构建深度神经网络架构,结合递归神经网络和时间衰减机制来建模变量相关性,估算缺失值,并捕获不同时间间隔的影响。由此获得的完整数据矩阵用于下游风险预测任务。本研究旨在通过同时执行这两项任务来获得更理想的输入和预测精度。提出了一种新的多任务深度神经网络,该网络在执行风险预测任务的同时,将归算任务作为辅助任务。我们使用两个公开的EHR数据库验证了临床时间序列imputation和院内死亡率预测任务的方法。实验结果表明,我们的方法明显优于目前最先进的估计预测方法。实证结果还表明,时间衰减机制的引入是提高估算和预测性能的关键因素。本研究提出的新型深度估算-预测网络可对电子病历数据提供更准确的估算和预测结果。未来的工作应侧重于开发更有效的时间衰减机制,以同时提高多任务学习模型的输入和预测性能。
{"title":"Multi-Task Deep Neural Networks for Irregularly Sampled Multivariate Clinical Time Series.","authors":"Yuxi Liu, Zhenhao Zhang, Shaowen Qin, Jiang Bian","doi":"10.1109/ichi61247.2024.00025","DOIUrl":"10.1109/ichi61247.2024.00025","url":null,"abstract":"<p><p>Multivariate clinical time series data, such as those contained in Electronic Health Records (EHR), often exhibit high levels of irregularity, notably, many missing values and varying time intervals. Existing methods usually construct deep neural network architectures that combine recurrent neural networks and time decay mechanisms to model variable correlations, impute missing values, and capture the impact of varying time intervals. The complete data matrices thus obtained from the imputation task are used for downstream risk prediction tasks. This study aims to achieve more desirable imputation and prediction accuracy by performing both tasks simultaneously. We present a new multi-task deep neural network that incorporates the imputation task as an auxiliary task while performing risk prediction tasks. We validate the method on clinical time series imputation and in-hospital mortality prediction tasks using two publicly available EHR databases. The experimental results show that our method outperforms state-of-the-art imputation-prediction methods by significant margins. The results also empirically demonstrate that the incorporation of time decay mechanisms is a critical factor for superior imputation and prediction performance. The novel deep imputation-prediction network proposed in this study provides more accurate imputation and prediction results with EHR data. Future work should focus on developing more effective time decay mechanisms for simultaneously enhancing the imputation and prediction performance of multi-task learning models.</p>","PeriodicalId":73284,"journal":{"name":"IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics","volume":"2024 ","pages":"135-140"},"PeriodicalIF":0.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11670123/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142900697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE International Conference on Healthcare Informatics. IEEE International Conference on Healthcare Informatics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1