Kemeng Huang, Floyd M. Chitalu, Huancheng Lin, Taku Komura
{"title":"GIPC: Fast and stable Gauss-Newton optimization of IPC barrier energy","authors":"Kemeng Huang, Floyd M. Chitalu, Huancheng Lin, Taku Komura","doi":"10.1145/3643028","DOIUrl":null,"url":null,"abstract":"<p>Barrier functions are crucial for maintaining an intersection and inversion free simulation trajectory but existing methods which directly use distance can restrict implementation design and performance. We present an approach to rewriting the barrier function for arriving at an efficient and robust approximation of its Hessian. The key idea is to formulate a simplicial geometric measure of contact using mesh boundary elements, from which analytic eigensystems are derived and enhanced with filtering and stiffening terms that ensure robustness with respect to the convergence of a Project-Newton solver. A further advantage of our rewriting of the barrier function is that it naturally caters to the notorious case of nearly-parallel edge-edge contacts for which we also present a novel analytic eigensystem. Our approach is thus well suited for standard second order unconstrained optimization strategies for resolving contacts, minimizing nonlinear nonconvex functions where the Hessian may be indefinite. The efficiency of our eigensystems alone yields a 3 × speedup over the standard IPC barrier formulation. We further apply our analytic proxy eigensystems to produce an entirely GPU-based implementation of IPC with significant further acceleration.</p>","PeriodicalId":50913,"journal":{"name":"ACM Transactions on Graphics","volume":null,"pages":null},"PeriodicalIF":7.8000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Graphics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643028","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Barrier functions are crucial for maintaining an intersection and inversion free simulation trajectory but existing methods which directly use distance can restrict implementation design and performance. We present an approach to rewriting the barrier function for arriving at an efficient and robust approximation of its Hessian. The key idea is to formulate a simplicial geometric measure of contact using mesh boundary elements, from which analytic eigensystems are derived and enhanced with filtering and stiffening terms that ensure robustness with respect to the convergence of a Project-Newton solver. A further advantage of our rewriting of the barrier function is that it naturally caters to the notorious case of nearly-parallel edge-edge contacts for which we also present a novel analytic eigensystem. Our approach is thus well suited for standard second order unconstrained optimization strategies for resolving contacts, minimizing nonlinear nonconvex functions where the Hessian may be indefinite. The efficiency of our eigensystems alone yields a 3 × speedup over the standard IPC barrier formulation. We further apply our analytic proxy eigensystems to produce an entirely GPU-based implementation of IPC with significant further acceleration.
期刊介绍:
ACM Transactions on Graphics (TOG) is a peer-reviewed scientific journal that aims to disseminate the latest findings of note in the field of computer graphics. It has been published since 1982 by the Association for Computing Machinery. Starting in 2003, all papers accepted for presentation at the annual SIGGRAPH conference are printed in a special summer issue of the journal.