Emily Fourie, Szu-Ching Lu, Jonathan Delafield-Butt, Susan M Rivera
{"title":"Motor Control Adherence to the Two-thirds Power Law Differs in Autistic Development.","authors":"Emily Fourie, Szu-Ching Lu, Jonathan Delafield-Butt, Susan M Rivera","doi":"10.1007/s10803-024-06240-6","DOIUrl":null,"url":null,"abstract":"<p><p>Autistic individuals often exhibit motor atypicalities, which may relate to difficulties in social communication. This study utilized a smart tablet activity to computationally characterize motor control by testing adherence to the two-thirds power law (2/3 PL), which captures a systematic covariation between velocity and curvature in motor execution and governs many forms of human movement. Children aged 4-8 years old participated in this study, including 24 autistic children and 33 typically developing children. Participants drew and traced ellipses on an iPad. We extracted data from finger movements on the screen, and computed adherence to the 2/3 PL and other kinematic metrics. Measures of cognitive and motor functioning were also collected. In comparison to the typically developing group, the autistic group demonstrated greater velocity modulation between curved and straight sections of movement, increased levels of acceleration and jerk, and greater intra- and inter-individual variability across several kinematic variables. Further, significant motor control development was observed in typically developing children, but not in those with autism. This study is the first to examine motor control adherence to the 2/3 PL in autistic children, revealing overall diminished motor control. Less smooth, more varied movement and an indication of developmental stasis in autistic children were observed. This study offers a novel tool for computational characterization of the autism motor signature in children's development, demonstrating how smart tablet technology enables accessible assessment of children's motor performance in an objective, quantifiable and scalable manner.</p>","PeriodicalId":15148,"journal":{"name":"Journal of Autism and Developmental Disorders","volume":" ","pages":"873-890"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11828761/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autism and Developmental Disorders","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10803-024-06240-6","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PSYCHOLOGY, DEVELOPMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Autistic individuals often exhibit motor atypicalities, which may relate to difficulties in social communication. This study utilized a smart tablet activity to computationally characterize motor control by testing adherence to the two-thirds power law (2/3 PL), which captures a systematic covariation between velocity and curvature in motor execution and governs many forms of human movement. Children aged 4-8 years old participated in this study, including 24 autistic children and 33 typically developing children. Participants drew and traced ellipses on an iPad. We extracted data from finger movements on the screen, and computed adherence to the 2/3 PL and other kinematic metrics. Measures of cognitive and motor functioning were also collected. In comparison to the typically developing group, the autistic group demonstrated greater velocity modulation between curved and straight sections of movement, increased levels of acceleration and jerk, and greater intra- and inter-individual variability across several kinematic variables. Further, significant motor control development was observed in typically developing children, but not in those with autism. This study is the first to examine motor control adherence to the 2/3 PL in autistic children, revealing overall diminished motor control. Less smooth, more varied movement and an indication of developmental stasis in autistic children were observed. This study offers a novel tool for computational characterization of the autism motor signature in children's development, demonstrating how smart tablet technology enables accessible assessment of children's motor performance in an objective, quantifiable and scalable manner.
期刊介绍:
The Journal of Autism and Developmental Disorders seeks to advance theoretical and applied research as well as examine and evaluate clinical diagnoses and treatments for autism and related disabilities. JADD encourages research submissions on the causes of ASDs and related disorders, including genetic, immunological, and environmental factors; diagnosis and assessment tools (e.g., for early detection as well as behavioral and communications characteristics); and prevention and treatment options. Sample topics include: Social responsiveness in young children with autism Advances in diagnosing and reporting autism Omega-3 fatty acids to treat autism symptoms Parental and child adherence to behavioral and medical treatments for autism Increasing independent task completion by students with autism spectrum disorder Does laughter differ in children with autism? Predicting ASD diagnosis and social impairment in younger siblings of children with autism The effects of psychotropic and nonpsychotropic medication with adolescents and adults with ASD Increasing independence for individuals with ASDs Group interventions to promote social skills in school-aged children with ASDs Standard diagnostic measures for ASDs Substance abuse in adults with autism Differentiating between ADHD and autism symptoms Social competence and social skills training and interventions for children with ASDs Therapeutic horseback riding and social functioning in children with autism Authors and readers of the Journal of Autism and Developmental Disorders include sch olars, researchers, professionals, policy makers, and graduate students from a broad range of cross-disciplines, including developmental, clinical child, and school psychology; pediatrics; psychiatry; education; social work and counseling; speech, communication, and physical therapy; medicine and neuroscience; and public health.