Sandra Pusil, Ana Laguna, Brenda Chino, Jonathan Adrián Zegarra, Silvia Orlandi
{"title":"Early Identification of Autism Using Cry Analysis: A Systematic Review and Meta-analysis of Retrospective and Prospective Studies.","authors":"Sandra Pusil, Ana Laguna, Brenda Chino, Jonathan Adrián Zegarra, Silvia Orlandi","doi":"10.1007/s10803-025-06757-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cry analysis is emerging as a promising tool for early autism identification. Acoustic features such as fundamental frequency (F0), cry duration, and phonation have shown potential as early vocal biomarkers. This systematic review and meta-analysis aimed to evaluate the diagnostic value of cry characteristics and the role of Machine Learning (ML) in improving autism screening. A comprehensive search of relevant databases was conducted to identify studies examining acoustic cry features in infants with an elevated likelihood of autism. Inclusion criteria focused on retrospective and prospective studies with clear cry feature extraction methods. A meta-analysis was performed to synthesize findings, particularly focusing on differences in F0, and assessing the role of ML-based cry analysis. The review identified eleven studies with consistent acoustic markers, including F0, phonation, duration, amplitude, and voice quality, as reliable indicators of neurodevelopmental differences associated with autism. ML approaches significantly improved screening precision by capturing non-linear patterns in cry data. The meta-analysis of six studies revealed a trend toward higher F0 in autistic infants, although the pooled effect size was not statistically significant. Methodological heterogeneity and small sample sizes were notable limitations across studies. Cry analysis holds promise as a non-invasive, accessible tool for early autism screening, with ML integration enhancing its diagnostic potential. However, the findings emphasize the need for large-scale, longitudinal studies with standardized methodologies to validate its utility and ensure its applicability across diverse populations. Addressing these gaps could establish cry analysis as a cornerstone of early autism identification.</p>","PeriodicalId":15148,"journal":{"name":"Journal of Autism and Developmental Disorders","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Autism and Developmental Disorders","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1007/s10803-025-06757-4","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, DEVELOPMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cry analysis is emerging as a promising tool for early autism identification. Acoustic features such as fundamental frequency (F0), cry duration, and phonation have shown potential as early vocal biomarkers. This systematic review and meta-analysis aimed to evaluate the diagnostic value of cry characteristics and the role of Machine Learning (ML) in improving autism screening. A comprehensive search of relevant databases was conducted to identify studies examining acoustic cry features in infants with an elevated likelihood of autism. Inclusion criteria focused on retrospective and prospective studies with clear cry feature extraction methods. A meta-analysis was performed to synthesize findings, particularly focusing on differences in F0, and assessing the role of ML-based cry analysis. The review identified eleven studies with consistent acoustic markers, including F0, phonation, duration, amplitude, and voice quality, as reliable indicators of neurodevelopmental differences associated with autism. ML approaches significantly improved screening precision by capturing non-linear patterns in cry data. The meta-analysis of six studies revealed a trend toward higher F0 in autistic infants, although the pooled effect size was not statistically significant. Methodological heterogeneity and small sample sizes were notable limitations across studies. Cry analysis holds promise as a non-invasive, accessible tool for early autism screening, with ML integration enhancing its diagnostic potential. However, the findings emphasize the need for large-scale, longitudinal studies with standardized methodologies to validate its utility and ensure its applicability across diverse populations. Addressing these gaps could establish cry analysis as a cornerstone of early autism identification.
期刊介绍:
The Journal of Autism and Developmental Disorders seeks to advance theoretical and applied research as well as examine and evaluate clinical diagnoses and treatments for autism and related disabilities. JADD encourages research submissions on the causes of ASDs and related disorders, including genetic, immunological, and environmental factors; diagnosis and assessment tools (e.g., for early detection as well as behavioral and communications characteristics); and prevention and treatment options. Sample topics include: Social responsiveness in young children with autism Advances in diagnosing and reporting autism Omega-3 fatty acids to treat autism symptoms Parental and child adherence to behavioral and medical treatments for autism Increasing independent task completion by students with autism spectrum disorder Does laughter differ in children with autism? Predicting ASD diagnosis and social impairment in younger siblings of children with autism The effects of psychotropic and nonpsychotropic medication with adolescents and adults with ASD Increasing independence for individuals with ASDs Group interventions to promote social skills in school-aged children with ASDs Standard diagnostic measures for ASDs Substance abuse in adults with autism Differentiating between ADHD and autism symptoms Social competence and social skills training and interventions for children with ASDs Therapeutic horseback riding and social functioning in children with autism Authors and readers of the Journal of Autism and Developmental Disorders include sch olars, researchers, professionals, policy makers, and graduate students from a broad range of cross-disciplines, including developmental, clinical child, and school psychology; pediatrics; psychiatry; education; social work and counseling; speech, communication, and physical therapy; medicine and neuroscience; and public health.