Advantages of Cold Atmospheric Plasma Jet Generated by Positive Pulse Voltage in Anti-Cancer Therapy

IF 0.9 4区 物理与天体物理 Q4 PHYSICS, FLUIDS & PLASMAS Plasma Physics Reports Pub Date : 2024-01-27 DOI:10.1134/s1063780x2360130x
I. V. Schweigert, D. E. Zakrevsky, E. V. Milakhina, A. L. Aleksandrov, M. M. Biryukov, O. A. Koval
{"title":"Advantages of Cold Atmospheric Plasma Jet Generated by Positive Pulse Voltage in Anti-Cancer Therapy","authors":"I. V. Schweigert, D. E. Zakrevsky, E. V. Milakhina, A. L. Aleksandrov, M. M. Biryukov, O. A. Koval","doi":"10.1134/s1063780x2360130x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The intensity of the interaction between a helium cold atmospheric plasma jet (CAPJ) and a dielectric surface or animal skin is compared in experiment and numerical simulation. A cold plasma jet at atmospheric pressure is generated by a sinusoidal or positive pulsed voltage with different pulse durations in optimal modes. The impact effect is estimated on the basis of measured and calculated currents, line intensities in the CAPJ spectrum and temperature fields. The measured CAPJ characteristics show that the pulsed voltage for the CAPJ excitation is preferable compared to the sinusoidal mode. Varying the pulse duration of the periodic pulsed voltage makes it possible to obtain the maximum current and electric field strength at the surface within the permissible temperature in the contact area of the CAPJ with the skin of mice (&lt;42°C). It is shown that the results of the CAPJ study obtained in physical experiments using a dielectric plate are applicable for tumor-bearing mice treatment.</p>","PeriodicalId":735,"journal":{"name":"Plasma Physics Reports","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics Reports","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s1063780x2360130x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

Abstract

The intensity of the interaction between a helium cold atmospheric plasma jet (CAPJ) and a dielectric surface or animal skin is compared in experiment and numerical simulation. A cold plasma jet at atmospheric pressure is generated by a sinusoidal or positive pulsed voltage with different pulse durations in optimal modes. The impact effect is estimated on the basis of measured and calculated currents, line intensities in the CAPJ spectrum and temperature fields. The measured CAPJ characteristics show that the pulsed voltage for the CAPJ excitation is preferable compared to the sinusoidal mode. Varying the pulse duration of the periodic pulsed voltage makes it possible to obtain the maximum current and electric field strength at the surface within the permissible temperature in the contact area of the CAPJ with the skin of mice (<42°C). It is shown that the results of the CAPJ study obtained in physical experiments using a dielectric plate are applicable for tumor-bearing mice treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
正脉冲电压产生的冷大气等离子体射流在抗癌治疗中的优势
摘要 通过实验和数值模拟比较了氦冷等离子体射流(CAPJ)与介质表面或动物皮肤之间的相互作用强度。大气压下的冷等离子体射流是由正弦或正脉冲电压以不同的脉冲持续时间在最佳模式下产生的。根据测量和计算得出的电流、CAPJ 光谱中的线强度和温度场估算了冲击效应。测量的 CAPJ 特性表明,与正弦模式相比,脉冲电压更适合用于 CAPJ 激励。改变周期性脉冲电压的脉冲持续时间,可以在 CAPJ 与小鼠皮肤接触区域的允许温度(42°C)范围内获得表面的最大电流和电场强度。实验表明,使用电介质板在物理实验中获得的 CAPJ 研究结果适用于肿瘤小鼠的治疗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plasma Physics Reports
Plasma Physics Reports 物理-物理:流体与等离子体
CiteScore
1.90
自引率
36.40%
发文量
104
审稿时长
4-8 weeks
期刊介绍: Plasma Physics Reports is a peer reviewed journal devoted to plasma physics. The journal covers the following topics: high-temperature plasma physics related to the problem of controlled nuclear fusion based on magnetic and inertial confinement; physics of cosmic plasma, including magnetosphere plasma, sun and stellar plasma, etc.; gas discharge plasma and plasma generated by laser and particle beams. The journal also publishes papers on such related topics as plasma electronics, generation of radiation in plasma, and plasma diagnostics. As well as other original communications, the journal publishes topical reviews and conference proceedings.
期刊最新文献
Microwave Method of Tubular Plasma Density Measurement for Relativistic Microwave Oscillator On the Coefficient of Nonlinear Coupling of Two Electromagnetic Waves with Ordinary Polarization and a Longitudinal Upper Hybrid Wave in a High-Temperature Plasma Determination of Plasma Flow Velocity with Time Resolution Based on the Doppler Effect Laser Diagnostics of Content of Hydrogen Isotopes in the Globus-M2 Tokamak Wall The Impact of Warm Dense Plasma Environments on 2p → 1s Transition of Core-Hole Mg7+ Ions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1