{"title":"Study on the resistance characteristics of layered vegetation to overland flow","authors":"Lili Zhang, Shengtang Zhang, Haiping Huang","doi":"10.1002/eco.2621","DOIUrl":null,"url":null,"abstract":"<p>Different types of plants in the vegetation community near the surface of the basin coexist, forming a layered vegetation distribution with high and low plants in the morphology. In order to research the characteristics of flow resistance generated by layered vegetation on slope runoff, a flume experiment was carried out by simulating layered vegetation. The Manning roughness coefficient <i>n</i> was used to characterize the flow resistance of vegetation. Three kinds of vegetation with height combinations of 5 and 7 cm, 6 and 8 cm, and 7 and 9 cm were used for this experiment. By studying the relationship between Manning roughness coefficient <i>n</i> and water depth, it is found that the change of flow resistance of layered vegetation is closely related to the submerged state. The distribution of <i>n</i> shows an inverted “<i>J</i>” type with the increase of water depth. Under the condition of nonsubmerged state and transitional submerged state, <i>n</i> increases with the increase of water depth. The critical point <i>n</i> values of the two states will plummet, and the growth rate of <i>n</i> in the nonsubmerged state is greater than that in the completely submerged state. In the transitional submerged state and completely submerged state, the higher the plant height below the water surface, the higher the corresponding <i>n</i> value and the greater the change rate of <i>n</i>. Formula for predicting overland flow resistance of layered vegetation was established by considering the influence of combined vegetation height and Reynolds number.</p>","PeriodicalId":55169,"journal":{"name":"Ecohydrology","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecohydrology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eco.2621","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Different types of plants in the vegetation community near the surface of the basin coexist, forming a layered vegetation distribution with high and low plants in the morphology. In order to research the characteristics of flow resistance generated by layered vegetation on slope runoff, a flume experiment was carried out by simulating layered vegetation. The Manning roughness coefficient n was used to characterize the flow resistance of vegetation. Three kinds of vegetation with height combinations of 5 and 7 cm, 6 and 8 cm, and 7 and 9 cm were used for this experiment. By studying the relationship between Manning roughness coefficient n and water depth, it is found that the change of flow resistance of layered vegetation is closely related to the submerged state. The distribution of n shows an inverted “J” type with the increase of water depth. Under the condition of nonsubmerged state and transitional submerged state, n increases with the increase of water depth. The critical point n values of the two states will plummet, and the growth rate of n in the nonsubmerged state is greater than that in the completely submerged state. In the transitional submerged state and completely submerged state, the higher the plant height below the water surface, the higher the corresponding n value and the greater the change rate of n. Formula for predicting overland flow resistance of layered vegetation was established by considering the influence of combined vegetation height and Reynolds number.
期刊介绍:
Ecohydrology is an international journal publishing original scientific and review papers that aim to improve understanding of processes at the interface between ecology and hydrology and associated applications related to environmental management.
Ecohydrology seeks to increase interdisciplinary insights by placing particular emphasis on interactions and associated feedbacks in both space and time between ecological systems and the hydrological cycle. Research contributions are solicited from disciplines focusing on the physical, ecological, biological, biogeochemical, geomorphological, drainage basin, mathematical and methodological aspects of ecohydrology. Research in both terrestrial and aquatic systems is of interest provided it explicitly links ecological systems and the hydrologic cycle; research such as aquatic ecological, channel engineering, or ecological or hydrological modelling is less appropriate for the journal unless it specifically addresses the criteria above. Manuscripts describing individual case studies are of interest in cases where broader insights are discussed beyond site- and species-specific results.