The Future of Electronic Commerce in the IoT Environment

IF 5.1 3区 管理学 Q1 BUSINESS Journal of Theoretical and Applied Electronic Commerce Research Pub Date : 2024-01-24 DOI:10.3390/jtaer19010010
Antonina Lazić, Saša Milić, Dragan Vukmirović
{"title":"The Future of Electronic Commerce in the IoT Environment","authors":"Antonina Lazić, Saša Milić, Dragan Vukmirović","doi":"10.3390/jtaer19010010","DOIUrl":null,"url":null,"abstract":"The Internet of Things (IoT) was born from the fusion of virtual and physical space and became the initiator of many scientific fields. Economic sustainability is the key to further development and progress. To keep up with the changes, it is necessary to adapt economic models and concepts to meet the requirements of future smart environments. Today, the need for electronic commerce (e-commerce) has become an economic priority during the transition between Industry 4.0 and Industry 5.0. Unlike mass production in Industry 4.0, customized production in Industry 5.0 should gain additional benefits in vertical management and decision-making concepts. The authors’ research is focused on e-commerce in a three-layer vertical IoT environment. The vertical IoT concept is composed of edge, fog, and cloud layers. Given the ubiquity of artificial intelligence in data processing, economic analysis, and predictions, this paper presents a few state-of-the-art machine learning (ML) algorithms facilitating the transition from a flat to a vertical e-commerce concept. The authors also propose hands-on ML algorithms for a few e-commerce types: consumer–consumer and consumer–company–consumer relationships. These algorithms are mainly composed of convolutional neural networks (CNNs), natural language understanding (NLU), sequential pattern mining (SPM), reinforcement learning (RL for agent training), algorithms for clicking on the item prediction, consumer behavior learning, etc. All presented concepts, algorithms, and models are described in detail.","PeriodicalId":46198,"journal":{"name":"Journal of Theoretical and Applied Electronic Commerce Research","volume":"4 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Theoretical and Applied Electronic Commerce Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.3390/jtaer19010010","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BUSINESS","Score":null,"Total":0}
引用次数: 0

Abstract

The Internet of Things (IoT) was born from the fusion of virtual and physical space and became the initiator of many scientific fields. Economic sustainability is the key to further development and progress. To keep up with the changes, it is necessary to adapt economic models and concepts to meet the requirements of future smart environments. Today, the need for electronic commerce (e-commerce) has become an economic priority during the transition between Industry 4.0 and Industry 5.0. Unlike mass production in Industry 4.0, customized production in Industry 5.0 should gain additional benefits in vertical management and decision-making concepts. The authors’ research is focused on e-commerce in a three-layer vertical IoT environment. The vertical IoT concept is composed of edge, fog, and cloud layers. Given the ubiquity of artificial intelligence in data processing, economic analysis, and predictions, this paper presents a few state-of-the-art machine learning (ML) algorithms facilitating the transition from a flat to a vertical e-commerce concept. The authors also propose hands-on ML algorithms for a few e-commerce types: consumer–consumer and consumer–company–consumer relationships. These algorithms are mainly composed of convolutional neural networks (CNNs), natural language understanding (NLU), sequential pattern mining (SPM), reinforcement learning (RL for agent training), algorithms for clicking on the item prediction, consumer behavior learning, etc. All presented concepts, algorithms, and models are described in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网环境下电子商务的未来
物联网(IoT)诞生于虚拟空间和物理空间的融合,并成为许多科学领域的开创者。经济的可持续性是进一步发展和进步的关键。要跟上变化的步伐,就必须调整经济模式和理念,以满足未来智能环境的要求。如今,在工业 4.0 和工业 5.0 的过渡时期,电子商务(e-commerce)的需求已成为经济领域的优先事项。与工业 4.0 中的大规模生产不同,工业 5.0 中的定制化生产应在垂直管理和决策理念方面获得更多益处。作者的研究重点是三层垂直物联网环境下的电子商务。垂直物联网概念由边缘层、雾层和云层组成。鉴于人工智能在数据处理、经济分析和预测方面无处不在,本文介绍了一些最先进的机器学习(ML)算法,以促进从平面电子商务概念向垂直电子商务概念的过渡。作者还针对消费者-消费者关系和消费者-公司-消费者关系等几种电子商务类型提出了实用的机器学习算法。这些算法主要包括卷积神经网络(CNN)、自然语言理解(NLU)、序列模式挖掘(SPM)、强化学习(用于代理培训的 RL)、商品点击预测算法、消费者行为学习等。所有介绍的概念、算法和模型都有详细说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
3.60%
发文量
67
期刊介绍: The Journal of Theoretical and Applied Electronic Commerce Research (JTAER) has been created to allow researchers, academicians and other professionals an agile and flexible channel of communication in which to share and debate new ideas and emerging technologies concerned with this rapidly evolving field. Business practices, social, cultural and legal concerns, personal privacy and security, communications technologies, mobile connectivity are among the important elements of electronic commerce and are becoming ever more relevant in everyday life. JTAER will assist in extending and improving the use of electronic commerce for the benefit of our society.
期刊最新文献
Can Influencer Persona Increase the Effectiveness of Social Media Video Ads? The Mediating Effect of Consumer Perceptions of Self Four-Party Evolutionary Game Analysis of Value Co-Creation Behavior of Bulk Logistics Enterprises in Digital Transformation Value Creation in Technology-Driven Ecosystems: Role of Coopetition in Industrial Networks Online Social Influence and Negative Emotions toward Snow Sports Brands: Moderation and Mediation Effects Direct Mail or Bonded Warehouse? Logistics Mode Selection in Cross-Border E-Commerce under Exchange Rate Risk
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1