Reviving spent lithium-ion batteries: The advancements and challenges of sustainable black mass recovery

Yunjia Ran, Songhak Yoon, Dennis M. Jöckel, Samuel Meles Neguse, Sungho Baek, Marc Widenmeyer, Benjamin Balke-Grünewald, Anke Weidenkaff
{"title":"Reviving spent lithium-ion batteries: The advancements and challenges of sustainable black mass recovery","authors":"Yunjia Ran,&nbsp;Songhak Yoon,&nbsp;Dennis M. Jöckel,&nbsp;Samuel Meles Neguse,&nbsp;Sungho Baek,&nbsp;Marc Widenmeyer,&nbsp;Benjamin Balke-Grünewald,&nbsp;Anke Weidenkaff","doi":"10.1002/bte2.20230059","DOIUrl":null,"url":null,"abstract":"<p>Ideally, once batteries reach their end-of-life, they are expected to be collected, dismantled, and converted into black mass (BM), which contains significant amounts of valuable metals. BM can be regarded as a sort of urban mine, where recyclers extract and reintroduce the materials into new battery manufacturing. Focusing on BM, this article discusses the necessity of BM recovery and current recycling situations. Although the benefits of recycling are widely acknowledged, many challenges and issues remain. The BM market is still in its infancy and relevant regulatory frameworks need to be updated with respect to the widespread use and advancement of lithium-ion batteries. Current BM producing and processing technologies are gaining momentum and still have room for large improvements in terms of economic feasibility and environmental footprint. Finding solutions for these challenges in the end requires efforts from both researchers and industrial stakeholders with growing interests and long-term patient engagement. Battery regulations and legal support are highly anticipated for industries to keep high levels of commitment to long-term investments.</p>","PeriodicalId":8807,"journal":{"name":"Battery Energy","volume":"3 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bte2.20230059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Battery Energy","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bte2.20230059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ideally, once batteries reach their end-of-life, they are expected to be collected, dismantled, and converted into black mass (BM), which contains significant amounts of valuable metals. BM can be regarded as a sort of urban mine, where recyclers extract and reintroduce the materials into new battery manufacturing. Focusing on BM, this article discusses the necessity of BM recovery and current recycling situations. Although the benefits of recycling are widely acknowledged, many challenges and issues remain. The BM market is still in its infancy and relevant regulatory frameworks need to be updated with respect to the widespread use and advancement of lithium-ion batteries. Current BM producing and processing technologies are gaining momentum and still have room for large improvements in terms of economic feasibility and environmental footprint. Finding solutions for these challenges in the end requires efforts from both researchers and industrial stakeholders with growing interests and long-term patient engagement. Battery regulations and legal support are highly anticipated for industries to keep high levels of commitment to long-term investments.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
废旧锂离子电池的再生:可持续黑质回收的进步与挑战
在理想情况下,一旦电池达到报废年限,就会被收集、拆解并转化为含有大量有价金属的黑质(BM)。BM 可被视为一种城市矿山,回收人员在此提取材料并将其重新用于新电池的制造。本文以 BM 为重点,讨论了 BM 回收的必要性和目前的回收情况。尽管回收利用的好处已得到广泛认可,但仍存在许多挑战和问题。BM 市场仍处于起步阶段,随着锂离子电池的广泛使用和发展,相关监管框架需要更新。当前的 BM 生产和加工技术正处于上升势头,但在经济可行性和环境足迹方面仍有很大的改进空间。要最终找到应对这些挑战的解决方案,需要研究人员和利益日益增长的工业利益相关者共同努力,并需要患者的长期参与。电池法规和法律支持是行业保持高水平长期投资承诺的高度期待。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.60
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Cover Image, Volume 3, Issue 6, November 2024 Lithium Ion Batteries: Characteristics, Recycling and Deep-Sea Mining ZnxMnO2/PPy Nanowires Composite as Cathode Material for Aqueous Zinc-Ion Hybrid Supercapacitors Manipulation in the In Situ Growth Design Parameters of Aqueous Zinc-Based Electrodes for Batteries: The Fundamentals and Perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1