Chunxiang Geng, Yanyan Gao, Hao Zhang, Dongxing Xue, He Shan, Bin Wang, Xiaopu Wang, Jian Zhao
{"title":"Microplastic migration in porous media at various scales: a review","authors":"Chunxiang Geng, Yanyan Gao, Hao Zhang, Dongxing Xue, He Shan, Bin Wang, Xiaopu Wang, Jian Zhao","doi":"10.1007/s10311-023-01688-x","DOIUrl":null,"url":null,"abstract":"<div><p>Migration of microplastics in porous media is an important, yet overlooked phenomenon because most microplastic research has focused mainly on microplastic behavior in aquatic environments. Here we review experimental advances of microplastic migration in porous media, with emphasis on factors influencing microplastic migration. We observed that microplastic migration is influenced by environmental factors and microplastic properties. The effect of microplastic surface charge and functional groups, and of soil organisms on microplastic migration is unclear. Research at the macro-scale, higher than 1 m, predominantly starts with field sampling, and then carries out measurements or mathematical modeling to explore migration patterns. At the meso-scale, below 1 cm, studies often employ filled sand columns as proxies for porous media to generate breakthrough curves and retention profiles. At the micro-scale, below 1 mm, visualization of microplastic migration in pores is done by lab-on-a-chip devices to build transparent micromodels. Current research predominantly relies on industrially produced regular spherical microplastics, with limited focus on macro- and micro-scale studies.</p></div>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"22 2","pages":"691 - 713"},"PeriodicalIF":15.0000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10311-023-01688-x","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Migration of microplastics in porous media is an important, yet overlooked phenomenon because most microplastic research has focused mainly on microplastic behavior in aquatic environments. Here we review experimental advances of microplastic migration in porous media, with emphasis on factors influencing microplastic migration. We observed that microplastic migration is influenced by environmental factors and microplastic properties. The effect of microplastic surface charge and functional groups, and of soil organisms on microplastic migration is unclear. Research at the macro-scale, higher than 1 m, predominantly starts with field sampling, and then carries out measurements or mathematical modeling to explore migration patterns. At the meso-scale, below 1 cm, studies often employ filled sand columns as proxies for porous media to generate breakthrough curves and retention profiles. At the micro-scale, below 1 mm, visualization of microplastic migration in pores is done by lab-on-a-chip devices to build transparent micromodels. Current research predominantly relies on industrially produced regular spherical microplastics, with limited focus on macro- and micro-scale studies.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.