{"title":"Hydrothermal liquefaction for producing liquid fuels and chemicals from biomass-derived platform compounds: a review","authors":"Bingbing Qiu, Xuedong Tao, Yanfang Wang, Donghui Zhang, Huaqiang Chu","doi":"10.1007/s10311-024-01791-7","DOIUrl":null,"url":null,"abstract":"<p>Biomass offers a promising alternative for producing biofuels and chemicals through hydrothermal liquefaction, a process known for its ability to convert complex organic materials into valuable liquid products. Optimizing hydrothermal liquefaction for large-scale application involves understanding the underlying mechanisms and addressing key scientific and technical issues. We review hydrothermal liquefaction of biomass-derived chemicals, focusing on the breakdown and depolymerization of cellulose, hemicellulose, lignin, lipids, and proteins under hydrothermal conditions. We examine critical parameters such as reaction temperature, pressure, solvent selection, and catalyst choice, and their impact on product yield and quality. Catalytic routes transform key intermediates, such as 5-hydroxymethylfurfural and levulinic acid, into high-value liquid fuels and chemicals, offering significant potential for sustainable fuel production. Recent advances in process optimization are discussed.</p>","PeriodicalId":541,"journal":{"name":"Environmental Chemistry Letters","volume":"1 1","pages":""},"PeriodicalIF":15.0000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Chemistry Letters","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10311-024-01791-7","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomass offers a promising alternative for producing biofuels and chemicals through hydrothermal liquefaction, a process known for its ability to convert complex organic materials into valuable liquid products. Optimizing hydrothermal liquefaction for large-scale application involves understanding the underlying mechanisms and addressing key scientific and technical issues. We review hydrothermal liquefaction of biomass-derived chemicals, focusing on the breakdown and depolymerization of cellulose, hemicellulose, lignin, lipids, and proteins under hydrothermal conditions. We examine critical parameters such as reaction temperature, pressure, solvent selection, and catalyst choice, and their impact on product yield and quality. Catalytic routes transform key intermediates, such as 5-hydroxymethylfurfural and levulinic acid, into high-value liquid fuels and chemicals, offering significant potential for sustainable fuel production. Recent advances in process optimization are discussed.
期刊介绍:
Environmental Chemistry Letters explores the intersections of geology, chemistry, physics, and biology. Published articles are of paramount importance to the examination of both natural and engineered environments. The journal features original and review articles of exceptional significance, encompassing topics such as the characterization of natural and impacted environments, the behavior, prevention, treatment, and control of mineral, organic, and radioactive pollutants. It also delves into interfacial studies involving diverse media like soil, sediment, water, air, organisms, and food. Additionally, the journal covers green chemistry, environmentally friendly synthetic pathways, alternative fuels, ecotoxicology, risk assessment, environmental processes and modeling, environmental technologies, remediation and control, and environmental analytical chemistry using biomolecular tools and tracers.