A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues

A. Zanoletti, Eleonora Carena, Chiara Ferrara, Elza Bontempi
{"title":"A Review of Lithium-Ion Battery Recycling: Technologies, Sustainability, and Open Issues","authors":"A. Zanoletti, Eleonora Carena, Chiara Ferrara, Elza Bontempi","doi":"10.3390/batteries10010038","DOIUrl":null,"url":null,"abstract":"Lithium-ion batteries (LIBs) are a widely used energy storage technology as they possess high energy density and are characterized by the reversible intercalation/deintercalation of Li ions between electrodes. The rapid development of LIBs has led to increased production efficiency and lower costs for manufacturers, resulting in a growing demand for batteries and their application across various industries, particularly in different types of vehicles. In order to meet the demand for LIBs while minimizing climate-impacting emissions, the reuse, recycling, and repurposing of LIBs is a critical step toward achieving a sustainable battery economy. This paper provides a comprehensive review of lithium-ion battery recycling, covering topics such as current recycling technologies, technological advancements, policy gaps, design strategies, funding for pilot projects, and a comprehensive strategy for battery recycling. Additionally, this paper emphasizes the challenges associated with developing LIB recycling and the opportunities arising from these challenges, such as the potential for innovation and the creation of a more sustainable and circular economy. The environmental implications of LIB recycling are also evaluated with methodologies able to provide a sustainability analysis of the selected technology. This paper aims to enhance the comprehension of these trade-offs and encourage discussion on determining the “best” recycling route when targets are in conflict.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"31 15","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10010038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion batteries (LIBs) are a widely used energy storage technology as they possess high energy density and are characterized by the reversible intercalation/deintercalation of Li ions between electrodes. The rapid development of LIBs has led to increased production efficiency and lower costs for manufacturers, resulting in a growing demand for batteries and their application across various industries, particularly in different types of vehicles. In order to meet the demand for LIBs while minimizing climate-impacting emissions, the reuse, recycling, and repurposing of LIBs is a critical step toward achieving a sustainable battery economy. This paper provides a comprehensive review of lithium-ion battery recycling, covering topics such as current recycling technologies, technological advancements, policy gaps, design strategies, funding for pilot projects, and a comprehensive strategy for battery recycling. Additionally, this paper emphasizes the challenges associated with developing LIB recycling and the opportunities arising from these challenges, such as the potential for innovation and the creation of a more sustainable and circular economy. The environmental implications of LIB recycling are also evaluated with methodologies able to provide a sustainability analysis of the selected technology. This paper aims to enhance the comprehension of these trade-offs and encourage discussion on determining the “best” recycling route when targets are in conflict.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
锂离子电池回收回顾:技术、可持续性和未决问题
锂离子电池(LIB)具有高能量密度,其特点是锂离子在电极间的可逆插层/脱插层,因此是一种广泛应用的储能技术。锂离子电池的快速发展提高了生产效率,降低了制造商的成本,从而导致各行各业对电池的需求和应用不断增长,特别是在不同类型的汽车中。为了满足对锂电池的需求,同时最大限度地减少影响气候的排放,锂电池的再利用、回收和再利用是实现可持续电池经济的关键一步。本文全面回顾了锂离子电池的回收利用情况,涵盖了当前的回收利用技术、技术进步、政策差距、设计策略、试点项目资金以及电池回收利用综合策略等主题。此外,本文还强调了发展锂离子电池回收利用所面临的挑战,以及这些挑战所带来的机遇,如创新潜力和创造更可持续的循环经济。本文还通过对所选技术进行可持续性分析的方法,评估了锂离子电池回收利用对环境的影响。本文旨在加强对这些权衡的理解,并鼓励就目标冲突时确定 "最佳 "回收路线展开讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review Influence of Acetonitrile on the Electrochemical Behavior of Ionic Liquid-Based Supercapacitors An Aging-Optimized State-of-Charge-Controlled Multi-Stage Constant Current (MCC) Fast Charging Algorithm for Commercial Li-Ion Battery Based on Three-Electrode Measurements Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review Electrical Modeling and Characterization of Electrochemical Impedance Spectroscopy-Based Energy Storage Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1