Pub Date : 2024-07-26DOI: 10.3390/batteries10080266
B. Karamanova, Luybomir Soserov, E. Lefterova, T. Stankulov, Antonia Stoyanova
The creation of supercapacitors with superior energy density and power capabilities is critical for advanced energy storage solutions. Ionic liquid electrolytes offer a promising alternative in this respect. However, improving their cycle stability and efficiency is a complex task requiring extensive research and significant effort. The high viscosity of ionic liquids (ILs) limits their lifetime, but this can be mitigated by increasing the temperature or adding solvents. In this research, the electrochemical performance of symmetric activated carbon supercapacitors with 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) and different ratios of acetonitrile (ACN) as electrolytes were investigated. Long-term galvanostatic charge/discharge tests, impedance studies, and cyclic voltammetry were performed at temperatures between 24 to 60 °C. The addition of ACN to the ionic liquid increased electrochemical stability and reduced internal resistance, with the best performance observed at a 1:2 volume ratio of EMIMBF4 to ACN. This supercapacitor exhibited 87% cyclic stability after 5000 charge/discharge cycles in the voltage range of 0.05–2.8 V and a current rate of 1 Ag−1. It also achieved an energy density of 23 Whkg−1 and a power density of 748 Wkg−1. The supercapacitors were stable at elevated temperatures up to 60 °C, showing no degradation after operation under various thermal conditions.
{"title":"Influence of Acetonitrile on the Electrochemical Behavior of Ionic Liquid-Based Supercapacitors","authors":"B. Karamanova, Luybomir Soserov, E. Lefterova, T. Stankulov, Antonia Stoyanova","doi":"10.3390/batteries10080266","DOIUrl":"https://doi.org/10.3390/batteries10080266","url":null,"abstract":"The creation of supercapacitors with superior energy density and power capabilities is critical for advanced energy storage solutions. Ionic liquid electrolytes offer a promising alternative in this respect. However, improving their cycle stability and efficiency is a complex task requiring extensive research and significant effort. The high viscosity of ionic liquids (ILs) limits their lifetime, but this can be mitigated by increasing the temperature or adding solvents. In this research, the electrochemical performance of symmetric activated carbon supercapacitors with 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) and different ratios of acetonitrile (ACN) as electrolytes were investigated. Long-term galvanostatic charge/discharge tests, impedance studies, and cyclic voltammetry were performed at temperatures between 24 to 60 °C. The addition of ACN to the ionic liquid increased electrochemical stability and reduced internal resistance, with the best performance observed at a 1:2 volume ratio of EMIMBF4 to ACN. This supercapacitor exhibited 87% cyclic stability after 5000 charge/discharge cycles in the voltage range of 0.05–2.8 V and a current rate of 1 Ag−1. It also achieved an energy density of 23 Whkg−1 and a power density of 748 Wkg−1. The supercapacitors were stable at elevated temperatures up to 60 °C, showing no degradation after operation under various thermal conditions.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"20 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141799262","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.3390/batteries10080265
Amin Rahmani, M. Dibaj, Mohammad Akrami
Li-ion batteries are crucial for sustainable energy, powering electric vehicles, and supporting renewable energy storage systems for solar and wind power integration. Keeping these batteries at temperatures between 285 K and 310 K is crucial for optimal performance. This requires efficient battery thermal management systems (BTMS). Many studies, both numerical and experimental, have focused on improving BTMS efficiency. This paper presents a comprehensive review of the latest BTMS designs developed in 2023 and 2024, with a focus on recent advancements and innovations. The primary objective is to evaluate these new designs to identify key improvements and trends. This review categorizes BTMS designs into four cooling methods: air-cooling, liquid-cooling, phase change material (PCM)-cooling, and thermoelectric cooling. It provides a detailed analysis of each method. It also offers a unique examination of hybrid cooling BTMSs, classifying them based on their impact on the cooling process. A hybrid-cooling BTMS refers to a method that combines at least two of the four types of BTMS (air-cooling, liquid-cooling, PCM-cooling, and thermoelectric-cooling) to enhance thermal management efficiency. Unlike previous reviews, this study emphasizes the novelty of recent designs and the substantial results they achieve, offering significant insights and recommendations for future research and development in BTMS. By highlighting the latest innovations and providing an in-depth analysis, this paper serves as a valuable resource for researchers and engineers aiming to enhance battery performance and sustainability through advanced thermal management solutions.
{"title":"Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review","authors":"Amin Rahmani, M. Dibaj, Mohammad Akrami","doi":"10.3390/batteries10080265","DOIUrl":"https://doi.org/10.3390/batteries10080265","url":null,"abstract":"Li-ion batteries are crucial for sustainable energy, powering electric vehicles, and supporting renewable energy storage systems for solar and wind power integration. Keeping these batteries at temperatures between 285 K and 310 K is crucial for optimal performance. This requires efficient battery thermal management systems (BTMS). Many studies, both numerical and experimental, have focused on improving BTMS efficiency. This paper presents a comprehensive review of the latest BTMS designs developed in 2023 and 2024, with a focus on recent advancements and innovations. The primary objective is to evaluate these new designs to identify key improvements and trends. This review categorizes BTMS designs into four cooling methods: air-cooling, liquid-cooling, phase change material (PCM)-cooling, and thermoelectric cooling. It provides a detailed analysis of each method. It also offers a unique examination of hybrid cooling BTMSs, classifying them based on their impact on the cooling process. A hybrid-cooling BTMS refers to a method that combines at least two of the four types of BTMS (air-cooling, liquid-cooling, PCM-cooling, and thermoelectric-cooling) to enhance thermal management efficiency. Unlike previous reviews, this study emphasizes the novelty of recent designs and the substantial results they achieve, offering significant insights and recommendations for future research and development in BTMS. By highlighting the latest innovations and providing an in-depth analysis, this paper serves as a valuable resource for researchers and engineers aiming to enhance battery performance and sustainability through advanced thermal management solutions.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"14 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.3390/batteries10080268
Muskan Srivastava, Anil Kumar M. R., Karim Zaghib
The effects of global warming highlight the urgent need for effective solutions to this problem. The electrification of society, which occurs through the widespread adoption of electric vehicles (EVs), is a critical strategy to combat climate change. Lithium-ion batteries (LIBs) are vital components of the global energy-storage market for EVs, and sodium-ion batteries (SIBs) have gained renewed interest owing to their potential for rapid growth. Improved safety and stability have also put solid-state batteries (SSBs) on the chart of top batteries in the world. This review examines three critical battery technologies: LIBs, SIBs, and SSBs. Although research has historically concentrated on heavier battery components, such as electrodes, to achieve high gravimetric density, binders, which comprise less than 5% of the battery weight, have demonstrated great promise for meeting the increasing need for energy storage. This review thoroughly examines various binders, focusing on their solubilities in water and organic solvents. Understanding binder mechanisms is crucial for developing binders that maintain strong adhesion to electrodes, even during volume fluctuations caused by lithiation and delithiation. Therefore, we investigated the different mechanisms associated with binders. This review also discusses failure mechanisms and innovative design strategies to improve the performance of binders, such as composite, conductive, and self-healing binders. By investigating these fields, we hope to develop energy storage technologies that are more dependable and efficient while also helping to satisfy future energy needs.
{"title":"Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review","authors":"Muskan Srivastava, Anil Kumar M. R., Karim Zaghib","doi":"10.3390/batteries10080268","DOIUrl":"https://doi.org/10.3390/batteries10080268","url":null,"abstract":"The effects of global warming highlight the urgent need for effective solutions to this problem. The electrification of society, which occurs through the widespread adoption of electric vehicles (EVs), is a critical strategy to combat climate change. Lithium-ion batteries (LIBs) are vital components of the global energy-storage market for EVs, and sodium-ion batteries (SIBs) have gained renewed interest owing to their potential for rapid growth. Improved safety and stability have also put solid-state batteries (SSBs) on the chart of top batteries in the world. This review examines three critical battery technologies: LIBs, SIBs, and SSBs. Although research has historically concentrated on heavier battery components, such as electrodes, to achieve high gravimetric density, binders, which comprise less than 5% of the battery weight, have demonstrated great promise for meeting the increasing need for energy storage. This review thoroughly examines various binders, focusing on their solubilities in water and organic solvents. Understanding binder mechanisms is crucial for developing binders that maintain strong adhesion to electrodes, even during volume fluctuations caused by lithiation and delithiation. Therefore, we investigated the different mechanisms associated with binders. This review also discusses failure mechanisms and innovative design strategies to improve the performance of binders, such as composite, conductive, and self-healing binders. By investigating these fields, we hope to develop energy storage technologies that are more dependable and efficient while also helping to satisfy future energy needs.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"54 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141798684","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-26DOI: 10.3390/batteries10080267
Alexis Kalk, Lea Leuthner, Christian Kupper, Marc Hiller
This paper proposes a method that leads to a highly accurate state-of-charge dependent multi-stage constant current (MCC) charging algorithm for electric bicycle batteries to reduce the charging time without accelerating aging by avoiding Li-plating. First, the relation between the current rate, state-of-charge, and Li-plating is experimentally analyzed with the help of three-electrode measurements. Therefore, a SOC-dependent charging algorithm is proposed. Secondly, a SOC estimation algorithm based on an Extended Kalman Filter is developed in MATLAB/Simulink to conduct high accuracy SOC estimations and control precisely the charging algorithm. The results of the experiments showed that the Root Mean Square Error (RMSE) of SOC estimation is 1.08%, and the charging time from 0% to 80% SOC is reduced by 30%.
{"title":"An Aging-Optimized State-of-Charge-Controlled Multi-Stage Constant Current (MCC) Fast Charging Algorithm for Commercial Li-Ion Battery Based on Three-Electrode Measurements","authors":"Alexis Kalk, Lea Leuthner, Christian Kupper, Marc Hiller","doi":"10.3390/batteries10080267","DOIUrl":"https://doi.org/10.3390/batteries10080267","url":null,"abstract":"This paper proposes a method that leads to a highly accurate state-of-charge dependent multi-stage constant current (MCC) charging algorithm for electric bicycle batteries to reduce the charging time without accelerating aging by avoiding Li-plating. First, the relation between the current rate, state-of-charge, and Li-plating is experimentally analyzed with the help of three-electrode measurements. Therefore, a SOC-dependent charging algorithm is proposed. Secondly, a SOC estimation algorithm based on an Extended Kalman Filter is developed in MATLAB/Simulink to conduct high accuracy SOC estimations and control precisely the charging algorithm. The results of the experiments showed that the Root Mean Square Error (RMSE) of SOC estimation is 1.08%, and the charging time from 0% to 80% SOC is reduced by 30%.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"19 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141800892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.3390/batteries10080263
Lei Bai, Jin-Yong Bae
This study presents the electrical modeling and characteristic analyses of energy storage systems (ESSs) based on the internal impedance characteristics of batteries to improve ESS stability. Frequencies ranging from 1 kHz to 0.1 Hz were injected into lithium-ion batteries, and the variation of the internal impedance of the batteries was obtained based on the reflected wave to determine the ESS state of charge (SoC) and temperature. The changes in the basic electrochemical impedance spectroscopy characteristics of the ESSs were observed. Specifically, the voltage, temperature, and SoC of an ESS that could be employed as a renewable ESS were analyzed. The impedance characteristics of the ESS were investigated via experimentation and simulation. The ESS comprised an electrically equivalent circuit of a series inductor (LS), series resistor (RS), parallel resistor (RP), and parallel capacitor (CP), as well as a MATLAB program based on its transfer function to generate energy. Furthermore, a method was developed for analyzing the frequency response of ESSs. The feasibility of the proposed electrical modeling was examined for a 58.4 V, 75 Ah, 4.4 kWh ESS.
{"title":"Electrical Modeling and Characterization of Electrochemical Impedance Spectroscopy-Based Energy Storage Systems","authors":"Lei Bai, Jin-Yong Bae","doi":"10.3390/batteries10080263","DOIUrl":"https://doi.org/10.3390/batteries10080263","url":null,"abstract":"This study presents the electrical modeling and characteristic analyses of energy storage systems (ESSs) based on the internal impedance characteristics of batteries to improve ESS stability. Frequencies ranging from 1 kHz to 0.1 Hz were injected into lithium-ion batteries, and the variation of the internal impedance of the batteries was obtained based on the reflected wave to determine the ESS state of charge (SoC) and temperature. The changes in the basic electrochemical impedance spectroscopy characteristics of the ESSs were observed. Specifically, the voltage, temperature, and SoC of an ESS that could be employed as a renewable ESS were analyzed. The impedance characteristics of the ESS were investigated via experimentation and simulation. The ESS comprised an electrically equivalent circuit of a series inductor (LS), series resistor (RS), parallel resistor (RP), and parallel capacitor (CP), as well as a MATLAB program based on its transfer function to generate energy. Furthermore, a method was developed for analyzing the frequency response of ESSs. The feasibility of the proposed electrical modeling was examined for a 58.4 V, 75 Ah, 4.4 kWh ESS.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"46 17","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141803939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-25DOI: 10.3390/batteries10080264
Michael Murphy, Mohammad Akrami
Battery packs found in electric vehicles (EVs) require thermal management systems to maintain safe operating temperatures in order to improve device performance and alleviate irregular temperatures that can cause irreversible damage to the cells. Cylindrical lithium-ion batteries are widely used in the electric vehicle industry due to their high energy density and extended life cycle. This report investigates the thermal performance of three liquid cooling designs for a six-cell battery pack using computational fluid dynamics (CFD). The first two designs, vertical flow design (VFD) and horizontal flow design (HFD), are influenced by existing linear and wavy channel structures. They went through multiple geometry optimisations, where parameters such as inlet velocity, the number of channels, and channel diameter were tested before being combined into the third and final optimal design (OD). All designs successfully maintained the maximum temperature of the cells below 306.5 K at an inlet velocity of 0.5 ms−1, meeting the predefined performance thresholds derived from the literature. The HFD design was the only one that failed to meet the temperature uniformity goal of 5 K. The optimal design achieved a maximum temperature of 301.311 K, which was 2.223 K lower than the VFD, and 4.707 K lower than the HFD. Furthermore, it produced a cell temperature difference of 1.144 K, outperforming the next-best design by 1.647 K, thus demonstrating superior temperature regulation. The OD design can manage temperatures by using lower inlet velocities and reducing power consumption. However, the increased cooling efficiency comes at the cost of an increase in weight for the system. This prompts the decision on whether to accommodate the added weight for improved safety or to allocate it to the addition of more batteries to enhance the vehicle’s power output.
{"title":"Advanced Thermal Management of Cylindrical Lithium-Ion Battery Packs in Electric Vehicles: A Comparative CFD Study of Vertical, Horizontal, and Optimised Liquid Cooling Designs","authors":"Michael Murphy, Mohammad Akrami","doi":"10.3390/batteries10080264","DOIUrl":"https://doi.org/10.3390/batteries10080264","url":null,"abstract":"Battery packs found in electric vehicles (EVs) require thermal management systems to maintain safe operating temperatures in order to improve device performance and alleviate irregular temperatures that can cause irreversible damage to the cells. Cylindrical lithium-ion batteries are widely used in the electric vehicle industry due to their high energy density and extended life cycle. This report investigates the thermal performance of three liquid cooling designs for a six-cell battery pack using computational fluid dynamics (CFD). The first two designs, vertical flow design (VFD) and horizontal flow design (HFD), are influenced by existing linear and wavy channel structures. They went through multiple geometry optimisations, where parameters such as inlet velocity, the number of channels, and channel diameter were tested before being combined into the third and final optimal design (OD). All designs successfully maintained the maximum temperature of the cells below 306.5 K at an inlet velocity of 0.5 ms−1, meeting the predefined performance thresholds derived from the literature. The HFD design was the only one that failed to meet the temperature uniformity goal of 5 K. The optimal design achieved a maximum temperature of 301.311 K, which was 2.223 K lower than the VFD, and 4.707 K lower than the HFD. Furthermore, it produced a cell temperature difference of 1.144 K, outperforming the next-best design by 1.647 K, thus demonstrating superior temperature regulation. The OD design can manage temperatures by using lower inlet velocities and reducing power consumption. However, the increased cooling efficiency comes at the cost of an increase in weight for the system. This prompts the decision on whether to accommodate the added weight for improved safety or to allocate it to the addition of more batteries to enhance the vehicle’s power output.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"42 2","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141805823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
With the increasing demand for Li resources worldwide, the easy recycling of Li-ion batteries materials becomes essential. We report a binder-free cathode consisting of carbon nanotubes (CNTs) and LiFePO4 (LFP) nanoparticles embedded in a 3D Al network. The electrode stability depends on the CNT ratio, where 3% CNT-wrapping LFPs provide a stable structure free of detachment from Al foam, as observed on Al foil. The binder-free cathode sheet exhibited excellent performance for high-rate discharge and long-term cycle life. Materials on the cathode can be easily detached with ultrasonic treatment when immersed in organic solvent, which is advantageous for a green and high-efficiency strategy of recycling all valuable materials compared to the binder-used electrode.
{"title":"Li-Ion Batteries with a Binder-Free Cathode of Carbon Nanotubes-LiFePO4-Al Foam","authors":"Ying Jin, Shaoxin Wei, Zhoufei Yang, Chaojie Cui, Jin Wang, Dongliang Li, Weizhong Qian","doi":"10.3390/batteries10080261","DOIUrl":"https://doi.org/10.3390/batteries10080261","url":null,"abstract":"With the increasing demand for Li resources worldwide, the easy recycling of Li-ion batteries materials becomes essential. We report a binder-free cathode consisting of carbon nanotubes (CNTs) and LiFePO4 (LFP) nanoparticles embedded in a 3D Al network. The electrode stability depends on the CNT ratio, where 3% CNT-wrapping LFPs provide a stable structure free of detachment from Al foam, as observed on Al foil. The binder-free cathode sheet exhibited excellent performance for high-rate discharge and long-term cycle life. Materials on the cathode can be easily detached with ultrasonic treatment when immersed in organic solvent, which is advantageous for a green and high-efficiency strategy of recycling all valuable materials compared to the binder-used electrode.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"18 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141808005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
As modern society continues to advance, the depletion of non-renewable energy sources (such as natural gas and petroleum) exacerbates environmental and energy issues. The development of green, environmentally friendly energy storage and conversion systems is imperative. The energy density of commercial lithium-ion batteries is approaching its theoretical limit, and even so, it struggles to meet the rapidly growing market demand. Lithium–oxygen batteries have garnered significant attention from researchers due to their exceptionally high theoretical energy density. However, challenges such as poor electrolyte stability, short cycle life, low discharge capacity, and high overpotential arise from the sluggish kinetics of the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during charging. This article elucidates the fundamental principles of lithium–oxygen batteries, analyzes the primary issues currently faced, and summarizes recent research advancements in air cathodes and anodes. Additionally, it proposes future directions and efforts for the development of lithium–air batteries.
{"title":"Advancements in Lithium–Oxygen Batteries: A Comprehensive Review of Cathode and Anode Materials","authors":"Jing Guo, Xue Meng, Qing Wang, Ya-hui Zhang, Shengxue Yan, Shaohua Luo","doi":"10.3390/batteries10080260","DOIUrl":"https://doi.org/10.3390/batteries10080260","url":null,"abstract":"As modern society continues to advance, the depletion of non-renewable energy sources (such as natural gas and petroleum) exacerbates environmental and energy issues. The development of green, environmentally friendly energy storage and conversion systems is imperative. The energy density of commercial lithium-ion batteries is approaching its theoretical limit, and even so, it struggles to meet the rapidly growing market demand. Lithium–oxygen batteries have garnered significant attention from researchers due to their exceptionally high theoretical energy density. However, challenges such as poor electrolyte stability, short cycle life, low discharge capacity, and high overpotential arise from the sluggish kinetics of the oxygen reduction reaction (ORR) during discharge and the oxygen evolution reaction (OER) during charging. This article elucidates the fundamental principles of lithium–oxygen batteries, analyzes the primary issues currently faced, and summarizes recent research advancements in air cathodes and anodes. Additionally, it proposes future directions and efforts for the development of lithium–air batteries.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"21 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141813876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.3390/batteries10070258
Maria Cortada-Torbellino, D. Elvira, A. El Aroudi, Hugo Valderrama-Blavi
The growth of electric vehicles (EVs) has prompted the need to enhance the technology of lithium-ion batteries (LIBs) in order to improve their response when subjected to external factors that can alter their performance, thereby affecting their safety and efficiency. Mechanical abuse has been considered one of the major sources of LIB failure due to the changes it provokes in the structural integrity of cells. Therefore, this article aims to review the main factors that aggravate the effects of mechanical loading based on the results of different laboratory tests that subjected LIBs to abusive testing. The results of different cell types tested under different mechanical loadings have been gathered in order to assess the changes in LIB properties and the main mechanisms responsible for their failure and permanent damage. The main consequences of mechanical abuse are the increase in LIB degradation and the formation of events such as internal short circuits (ISCs) and thermal runways (TRs). Then, a set of standards and regulations that evaluate the LIB under mechanical abuse conditions are also reviewed.
{"title":"Review of Lithium-Ion Battery Internal Changes Due to Mechanical Loading","authors":"Maria Cortada-Torbellino, D. Elvira, A. El Aroudi, Hugo Valderrama-Blavi","doi":"10.3390/batteries10070258","DOIUrl":"https://doi.org/10.3390/batteries10070258","url":null,"abstract":"The growth of electric vehicles (EVs) has prompted the need to enhance the technology of lithium-ion batteries (LIBs) in order to improve their response when subjected to external factors that can alter their performance, thereby affecting their safety and efficiency. Mechanical abuse has been considered one of the major sources of LIB failure due to the changes it provokes in the structural integrity of cells. Therefore, this article aims to review the main factors that aggravate the effects of mechanical loading based on the results of different laboratory tests that subjected LIBs to abusive testing. The results of different cell types tested under different mechanical loadings have been gathered in order to assess the changes in LIB properties and the main mechanisms responsible for their failure and permanent damage. The main consequences of mechanical abuse are the increase in LIB degradation and the formation of events such as internal short circuits (ISCs) and thermal runways (TRs). Then, a set of standards and regulations that evaluate the LIB under mechanical abuse conditions are also reviewed.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"19 15","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-22DOI: 10.3390/batteries10070259
Yubo Yuan, Juan Li, Pengpeng Lyu, Zhonghao Qian, Yunlong Jiang, Jiaming Wang
In order to cope with the failure of existing fault analysis schemes for AC/DC distribution networks with a high proportion of distributed generations, this paper proposes a fault characteristic analysis method for AC/DC distribution networks that considers the influence of distributed generation control strategies. Firstly, a transient model for the AC/DC distribution network connected to distributed generations is built. Then, the fault characteristics of the AC/DC distribution network in different stages, such as the capacitor discharge stage, inductive renewal stage, and steady state stage, is analyzed. Finally, detailed simulation analysis is conducted using PSCAD/EMTDC to validate the effectiveness of the developed scheme by the superior approximation performance between simulated curves and calculated curves.
{"title":"Fault Characterization for AC/DC Distribution Networks Considering the Control Strategy of Photovoltaic and Energy Storage Battery","authors":"Yubo Yuan, Juan Li, Pengpeng Lyu, Zhonghao Qian, Yunlong Jiang, Jiaming Wang","doi":"10.3390/batteries10070259","DOIUrl":"https://doi.org/10.3390/batteries10070259","url":null,"abstract":"In order to cope with the failure of existing fault analysis schemes for AC/DC distribution networks with a high proportion of distributed generations, this paper proposes a fault characteristic analysis method for AC/DC distribution networks that considers the influence of distributed generation control strategies. Firstly, a transient model for the AC/DC distribution network connected to distributed generations is built. Then, the fault characteristics of the AC/DC distribution network in different stages, such as the capacitor discharge stage, inductive renewal stage, and steady state stage, is analyzed. Finally, detailed simulation analysis is conducted using PSCAD/EMTDC to validate the effectiveness of the developed scheme by the superior approximation performance between simulated curves and calculated curves.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"20 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141814717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}