Bismuth Nanoparticles Encapsulated in a Porous Carbon Skeleton as Stable Chloride-Storage Electrodes for Seawater Desalination

Xiaoqing Dong, Ying Wang, Qian Zou, Chaolin Li
{"title":"Bismuth Nanoparticles Encapsulated in a Porous Carbon Skeleton as Stable Chloride-Storage Electrodes for Seawater Desalination","authors":"Xiaoqing Dong, Ying Wang, Qian Zou, Chaolin Li","doi":"10.3390/batteries10010035","DOIUrl":null,"url":null,"abstract":"Cost-effective bismuth (Bi) boasts a high theoretical capacity and exceptional selectivity towards Cl- ion storage, making it a promising material for desalination batteries (DBs). However, the substantial volume expansion and low conductivity severely hinder the cycling performance of Bi-based DBs. In this study, a carbon-layer-coated Bi nanocomposite (Bi@C) was synthesized by pyrolyzing a metal–organic framework (Bi-MOF) containing Bi using a straightforward method. The results show that the Bi@C synthesized under the condition of annealing at 700 °C for 2 h has the optimum properties. The Bi@C has good multiplication performance, and the desalination capacity is 106.1 mg/g at a high current density of 1000 mA/g. And the material exhibited a high desalination capacity of 141.9 mg/g at a current density of 500 mA/g and retained 66.9% of its capacity after 200 cycles. In addition, the Bi@C can operate at a wide range of NaCl concentrations from 0.05 to 2 mol/L. The desalination mechanism analysis of the Bi@C revealed that the carbon coating provides space for Bi particles to expand in volume, thereby mitigating the issues of electrode material powdering and shedding. Meanwhile, the porous carbon skeleton establishes electron and ion channels to enhance the electrode material’s conductivity. This research offers a promising strategy for the application of chloride-storage electrode materials in electrochemical desalination systems.","PeriodicalId":502356,"journal":{"name":"Batteries","volume":"45 7","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/batteries10010035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cost-effective bismuth (Bi) boasts a high theoretical capacity and exceptional selectivity towards Cl- ion storage, making it a promising material for desalination batteries (DBs). However, the substantial volume expansion and low conductivity severely hinder the cycling performance of Bi-based DBs. In this study, a carbon-layer-coated Bi nanocomposite (Bi@C) was synthesized by pyrolyzing a metal–organic framework (Bi-MOF) containing Bi using a straightforward method. The results show that the Bi@C synthesized under the condition of annealing at 700 °C for 2 h has the optimum properties. The Bi@C has good multiplication performance, and the desalination capacity is 106.1 mg/g at a high current density of 1000 mA/g. And the material exhibited a high desalination capacity of 141.9 mg/g at a current density of 500 mA/g and retained 66.9% of its capacity after 200 cycles. In addition, the Bi@C can operate at a wide range of NaCl concentrations from 0.05 to 2 mol/L. The desalination mechanism analysis of the Bi@C revealed that the carbon coating provides space for Bi particles to expand in volume, thereby mitigating the issues of electrode material powdering and shedding. Meanwhile, the porous carbon skeleton establishes electron and ion channels to enhance the electrode material’s conductivity. This research offers a promising strategy for the application of chloride-storage electrode materials in electrochemical desalination systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封装在多孔碳骨架中的纳米铋粒子作为稳定的氯化物存储电极用于海水淡化
具有成本效益的铋(Bi)具有很高的理论容量和优异的钙离子存储选择性,使其成为海水淡化电池(DBs)的理想材料。然而,铋基脱盐电池的体积膨胀大和导电率低严重影响了其循环性能。在本研究中,通过热解含铋的金属有机框架(Bi-MOF),采用简单的方法合成了碳层包覆的铋纳米复合材料(Bi@C)。结果表明,在 700 °C 退火 2 小时的条件下合成的 Bi@C 具有最佳性能。Bi@C 具有良好的倍增性能,在 1000 mA/g 的高电流密度下,海水淡化能力为 106.1 mg/g。而在电流密度为 500 mA/g 时,该材料的脱盐能力高达 141.9 mg/g,并且在循环 200 次后仍能保持 66.9% 的脱盐能力。此外,Bi@C 可在 0.05 至 2 mol/L 的宽 NaCl 浓度范围内工作。对 Bi@C 的脱盐机理分析表明,碳涂层为 Bi 粒子提供了体积膨胀的空间,从而缓解了电极材料粉化和脱落的问题。同时,多孔碳骨架建立了电子和离子通道,增强了电极材料的导电性。这项研究为储氯电极材料在电化学海水淡化系统中的应用提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Binders for Li-Ion Battery Technologies and Beyond: A Comprehensive Review Influence of Acetonitrile on the Electrochemical Behavior of Ionic Liquid-Based Supercapacitors An Aging-Optimized State-of-Charge-Controlled Multi-Stage Constant Current (MCC) Fast Charging Algorithm for Commercial Li-Ion Battery Based on Three-Electrode Measurements Recent Advancements in Battery Thermal Management Systems for Enhanced Performance of Li-Ion Batteries: A Comprehensive Review Electrical Modeling and Characterization of Electrochemical Impedance Spectroscopy-Based Energy Storage Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1