Prosocial dynamics in multiagent systems

IF 2.5 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Ai Magazine Pub Date : 2024-01-10 DOI:10.1002/aaai.12143
Fernando P. Santos
{"title":"Prosocial dynamics in multiagent systems","authors":"Fernando P. Santos","doi":"10.1002/aaai.12143","DOIUrl":null,"url":null,"abstract":"<p>Meeting today's major scientific and societal challenges requires understanding dynamics of prosociality in complex adaptive systems. Artificial intelligence (AI) is intimately connected with these challenges, both as an application domain and as a source of new computational techniques: On the one hand, AI suggests new algorithmic recommendations and interaction paradigms, offering novel possibilities to engineer cooperation and alleviate conflict in multiagent (hybrid) systems; on the other hand, new learning algorithms provide improved techniques to simulate sophisticated agents and increasingly realistic environments. In various settings, prosocial actions are socially desirable yet individually costly, thereby introducing a social dilemma of cooperation. How can AI enable cooperation in such domains? How to understand long-term dynamics in adaptive populations subject to such cooperation dilemmas? How to design cooperation incentives in multiagent learning systems? These are questions that I have been exploring and that I discussed during the New Faculty Highlights program at AAAI 2023. This paper summarizes and extends that talk.</p>","PeriodicalId":7854,"journal":{"name":"Ai Magazine","volume":"45 1","pages":"131-138"},"PeriodicalIF":2.5000,"publicationDate":"2024-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aaai.12143","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ai Magazine","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aaai.12143","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Meeting today's major scientific and societal challenges requires understanding dynamics of prosociality in complex adaptive systems. Artificial intelligence (AI) is intimately connected with these challenges, both as an application domain and as a source of new computational techniques: On the one hand, AI suggests new algorithmic recommendations and interaction paradigms, offering novel possibilities to engineer cooperation and alleviate conflict in multiagent (hybrid) systems; on the other hand, new learning algorithms provide improved techniques to simulate sophisticated agents and increasingly realistic environments. In various settings, prosocial actions are socially desirable yet individually costly, thereby introducing a social dilemma of cooperation. How can AI enable cooperation in such domains? How to understand long-term dynamics in adaptive populations subject to such cooperation dilemmas? How to design cooperation incentives in multiagent learning systems? These are questions that I have been exploring and that I discussed during the New Faculty Highlights program at AAAI 2023. This paper summarizes and extends that talk.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多代理系统中的亲社会动力学
要应对当今重大的科学和社会挑战,就必须了解复杂适应系统中的亲社会性动态。人工智能(AI)作为一个应用领域和新计算技术的源泉,与这些挑战密切相关:一方面,人工智能提出了新的算法建议和交互范式,为在多代理(混合)系统中设计合作和缓解冲突提供了新的可能性;另一方面,新的学习算法为模拟复杂代理和日益逼真的环境提供了更好的技术。在各种环境中,亲社会行动是社会所需要的,但个人成本却很高,这就引入了合作的社会困境。人工智能如何在这些领域促成合作?如何理解面临这种合作困境的自适应种群的长期动态?如何在多代理学习系统中设计合作激励机制?这些都是我一直在探索的问题,也是我在 AAAI 2023 新教师亮点计划中讨论过的问题。本文总结并扩展了这一讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ai Magazine
Ai Magazine 工程技术-计算机:人工智能
CiteScore
3.90
自引率
11.10%
发文量
61
审稿时长
>12 weeks
期刊介绍: AI Magazine publishes original articles that are reasonably self-contained and aimed at a broad spectrum of the AI community. Technical content should be kept to a minimum. In general, the magazine does not publish articles that have been published elsewhere in whole or in part. The magazine welcomes the contribution of articles on the theory and practice of AI as well as general survey articles, tutorial articles on timely topics, conference or symposia or workshop reports, and timely columns on topics of interest to AI scientists.
期刊最新文献
Issue Information AI fairness in practice: Paradigm, challenges, and prospects Toward the confident deployment of real-world reinforcement learning agents Towards robust visual understanding: A paradigm shift in computer vision from recognition to reasoning Efficient and robust sequential decision making algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1