Facial Recognition Attendance Monitoring System using Deep Learning Techniques

M. A. Thalor, Omkar S. Gaikwad
{"title":"Facial Recognition Attendance Monitoring System using Deep Learning Techniques","authors":"M. A. Thalor, Omkar S. Gaikwad","doi":"10.59890/ijist.v1i6.685","DOIUrl":null,"url":null,"abstract":"The Facial Recognition Attendance Monitoring System employing Deep Learning Techniques represents a cutting-edge application of artificial intelligence in educational and corporate environments. The implementation of a Facial Recognition System can aid in identifying or verifying a person's identity from a digital image. Accurate attendance records are vital to classroom evaluation. However, manual attendance tracking can result in errors, missed students, or duplicate entries. The adoption of the Face Recognition-based attendance system could help eliminate these shortcomings. This innovative approach involves utilizing a camera to capture input images, detecting faces using algorithms such as Haarcascade, Eigen values, support vector machines, or the Fisher face algorithm, verifying the faces against a database of student profiles, and marking attendance in an Excel sheet. The use of OpenCV, an open-source computer vision library, ensures the efficient functioning of the system.","PeriodicalId":503863,"journal":{"name":"International Journal of Integrated Science and Technology","volume":"8 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Integrated Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59890/ijist.v1i6.685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Facial Recognition Attendance Monitoring System employing Deep Learning Techniques represents a cutting-edge application of artificial intelligence in educational and corporate environments. The implementation of a Facial Recognition System can aid in identifying or verifying a person's identity from a digital image. Accurate attendance records are vital to classroom evaluation. However, manual attendance tracking can result in errors, missed students, or duplicate entries. The adoption of the Face Recognition-based attendance system could help eliminate these shortcomings. This innovative approach involves utilizing a camera to capture input images, detecting faces using algorithms such as Haarcascade, Eigen values, support vector machines, or the Fisher face algorithm, verifying the faces against a database of student profiles, and marking attendance in an Excel sheet. The use of OpenCV, an open-source computer vision library, ensures the efficient functioning of the system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用深度学习技术的人脸识别考勤监控系统
采用深度学习技术的面部识别考勤监控系统是人工智能在教育和企业环境中的尖端应用。人脸识别系统的实施有助于从数字图像中识别或验证一个人的身份。准确的出勤记录对课堂评估至关重要。然而,人工出勤跟踪可能会导致错误、遗漏学生或重复输入。采用基于人脸识别的考勤系统有助于消除这些缺陷。这种创新方法包括利用摄像头捕捉输入图像,使用哈卡斯卡特、特征值、支持向量机或费舍尔人脸算法等算法检测人脸,对照学生档案数据库验证人脸,并在 Excel 表中标注出勤情况。OpenCV 是一个开放源码的计算机视觉库,它的使用确保了系统的高效运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reconciling the Issues And Concerns of the Place of Rhetoric in Communication for Development Practice: an Essay Industrial Safety Helmet Detection: Innovative CNN-Based Classification Approach Classification of Drinking Water Potability With Artificial Neural Network Algorithm Valuation of Svm Kernel Performance in Organic and Non-Organic Waste Classification Bioactivities of Purple Shamrock (Oxalis Triangularis) Crude Extract and Evaluation of Shamrock Topical Antibacterial Gel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1