Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers

Jiaming Wen , Geng Chen , Shengchong Hui , Zijing Li , Jijun Yun , Xiaomeng Fan , Limin Zhang , Qian He , Xingmin Liu , Hongjing Wu
{"title":"Plasma induced dynamic coupling of microscopic factors to collaboratively promote EM losses coupling of transition metal dichalcogenide absorbers","authors":"Jiaming Wen ,&nbsp;Geng Chen ,&nbsp;Shengchong Hui ,&nbsp;Zijing Li ,&nbsp;Jijun Yun ,&nbsp;Xiaomeng Fan ,&nbsp;Limin Zhang ,&nbsp;Qian He ,&nbsp;Xingmin Liu ,&nbsp;Hongjing Wu","doi":"10.1016/j.apmate.2024.100180","DOIUrl":null,"url":null,"abstract":"<div><p>Plasma as the fourth state of matter has attracted great attention for material surface modification, which could induce changes in material microscopic factors, such as defects, phase transitions, crystallinity, and so on. However, the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated. Two-dimensional (2D) transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave (EMW) absorbers, which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors. Herein, we constructed a NaBH<sub>4</sub> solution-assisted Ar plasma method to modify the 2H-MoS<sub>2</sub> and 1T-WS<sub>2</sub> for exploring the regulation mechanism of microscopic factors. For MoS<sub>2</sub> and WS<sub>2</sub>, NaBH<sub>4</sub> solution-assisted Ar plasma treatment behaves with different effects on dielectric responses, realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling. Consequently, the MS-D3-0.5 (MoS<sub>2</sub>, 3 ​kV voltage, 0.5 ​mol ​L<sup>−1</sup> NaBH<sub>4</sub> solution) displays an optimum effective absorption bandwidth of 8.01 ​GHz, which is 319.4 ​% more than that of MS-raw sample. This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation, but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance.</p></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772834X24000113/pdfft?md5=0bb578882969a3d494bfae8edc9498c5&pid=1-s2.0-S2772834X24000113-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X24000113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Plasma as the fourth state of matter has attracted great attention for material surface modification, which could induce changes in material microscopic factors, such as defects, phase transitions, crystallinity, and so on. However, the interactions among those microscopic factors and regulation mechanism of macroscopic properties have rarely been investigated. Two-dimensional (2D) transition metal dichalcogenide with tunable structure and phase is one of the most promising electromagnetic wave (EMW) absorbers, which provides a favorable platform for systematically studying the dynamic coupling of its microscopic factors. Herein, we constructed a NaBH4 solution-assisted Ar plasma method to modify the 2H-MoS2 and 1T-WS2 for exploring the regulation mechanism of microscopic factors. For MoS2 and WS2, NaBH4 solution-assisted Ar plasma treatment behaves with different effects on dielectric responses, realizing dynamic coupling of material microscopic factors to collaboratively promote EM losses coupling. Consequently, the MS-D3-0.5 (MoS2, 3 ​kV voltage, 0.5 ​mol ​L−1 NaBH4 solution) displays an optimum effective absorption bandwidth of 8.01 ​GHz, which is 319.4 ​% more than that of MS-raw sample. This study not only reveals the novel mechanism of plasma induced dynamic coupling of microscopic factors for EMW dissipation, but also presents a new method of plasma-dominated surface modification to optimize the EMW absorption performance.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
等离子体诱导微观因素动态耦合,协同促进过渡金属二钙化吸收体的电磁损耗耦合
等离子体作为物质的第四态,在材料表面改性方面备受关注,它可以引起材料微观因素的变化,如缺陷、相变、结晶度等。然而,人们很少研究这些微观因素之间的相互作用以及对宏观性能的调控机制。具有可调结构和相位的二维过渡金属二钙化物是最有前途的电磁波吸收体之一,这为系统研究其微观因素的动态耦合提供了有利的平台。在此,我们构建了一种NaBH4溶液辅助氩等离子体方法来改性2H-MoS2和1T-WS2,以探索微观因子的调控机制。对于 MoS2 和 WS2,NaBH4 溶液辅助氩等离子体处理对介电响应有不同的影响,实现了材料微观因子的动态耦合,协同促进电磁损耗耦合。因此,MS-D3-0.5(MoS2、3 kV 电压、0.5 mol L-1 NaBH4 溶液)显示出 8.01 GHz 的最佳有效吸收带宽,比 MS-raw 样品高出 319.4%。这项研究不仅揭示了等离子体诱导微观因素动态耦合促进电磁波耗散的新机制,还提出了一种以等离子体为主导的表面改性新方法,以优化电磁波吸收性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
期刊最新文献
Emerging semiconductor ionic materials tailored by mixed ionic-electronic conductors for advanced fuel cells Surface engineering of nickel-rich single-crystal layered oxide cathode enables high-capacity and long cycle-life sulfide all-solid-state batteries New lead-free chemistry for in-situ monitoring of advanced nuclear power plant A comprehensive review on catalysts for seawater electrolysis 3D printing of flexible piezoelectric composite with integrated sensing and actuation applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1