{"title":"Thermal stability enhancement and prediction by ANN model","authors":"Ziyu Liu , Xiaoyi Yang","doi":"10.1016/j.egyai.2024.100348","DOIUrl":null,"url":null,"abstract":"<div><p>Supersonic aircraft requires thermal endurance of aviation fuel in the process of cooling engine and aircraft. As the composition of petroleum-based jet fuel (RP-3) is confined by crude oil and refining process, sustainable alternative jet fuel with green house gas reduction become to undertake the composition optimization for improving thermal stability. For designing aviation fuel with robust thermal stability and the detail understanding of thermal stability mechanism, RP-3, Fischer–Tropsch fuel, and additives with cyclic structure for absorbing free radical, were investigated thermal stability by modifying different blend ratios under different conditions. Thermal endurance degree was assessed by chroma and deposition tendency. FT blend with cyclic hydrocarbon can improve thermal endurance degree. In compliance with individual optimized blend ratio, the contribution follows methyl cyclopentane > decalin > methyl cyclohexane > tetralin > n-propyl-benzene > 1,2,4 trimethyl-benzene. The appropriate blend ratio could undertake hydrogen donors for terminating the propagation of oxygen-carrying radical, but hydrocarbons with cyclic structure could enhance deposition tendency. Methyl cyclopentane and its oxidation derivatives take the roles of solvent by anti-polymerization and hydrogen donor by opening cyclic structure in the thermal endurance process, and thus lead to a wide range of blend ratio for improving significantly thermal stability. <em>β</em>-scission leading to C–C bond cleavage is the major reaction at the early decomposition stage, which resulted in most abundant derivatives plus C2. The effects of additives on thermal stability are complex and nonlinear on the tendency of thermal deposits and thermal endurance degree, and thus the appropriate ANN-thermal stability model has been trained based on the experiment data and can achieve above 0.995 correlation coefficient. ANN - thermal stability model can predict not only the content of derivatives including ester, olefin, alcohol, ketone, cyclic oxide, aromatics but also the degree of thermal endurance.</p></div>","PeriodicalId":34138,"journal":{"name":"Energy and AI","volume":"16 ","pages":"Article 100348"},"PeriodicalIF":9.6000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666546824000144/pdfft?md5=a90d0cecc6ebe83e3174b5bdd57fd399&pid=1-s2.0-S2666546824000144-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and AI","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666546824000144","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Supersonic aircraft requires thermal endurance of aviation fuel in the process of cooling engine and aircraft. As the composition of petroleum-based jet fuel (RP-3) is confined by crude oil and refining process, sustainable alternative jet fuel with green house gas reduction become to undertake the composition optimization for improving thermal stability. For designing aviation fuel with robust thermal stability and the detail understanding of thermal stability mechanism, RP-3, Fischer–Tropsch fuel, and additives with cyclic structure for absorbing free radical, were investigated thermal stability by modifying different blend ratios under different conditions. Thermal endurance degree was assessed by chroma and deposition tendency. FT blend with cyclic hydrocarbon can improve thermal endurance degree. In compliance with individual optimized blend ratio, the contribution follows methyl cyclopentane > decalin > methyl cyclohexane > tetralin > n-propyl-benzene > 1,2,4 trimethyl-benzene. The appropriate blend ratio could undertake hydrogen donors for terminating the propagation of oxygen-carrying radical, but hydrocarbons with cyclic structure could enhance deposition tendency. Methyl cyclopentane and its oxidation derivatives take the roles of solvent by anti-polymerization and hydrogen donor by opening cyclic structure in the thermal endurance process, and thus lead to a wide range of blend ratio for improving significantly thermal stability. β-scission leading to C–C bond cleavage is the major reaction at the early decomposition stage, which resulted in most abundant derivatives plus C2. The effects of additives on thermal stability are complex and nonlinear on the tendency of thermal deposits and thermal endurance degree, and thus the appropriate ANN-thermal stability model has been trained based on the experiment data and can achieve above 0.995 correlation coefficient. ANN - thermal stability model can predict not only the content of derivatives including ester, olefin, alcohol, ketone, cyclic oxide, aromatics but also the degree of thermal endurance.