{"title":"Bolstering IoT security with IoT device type Identification using optimized Variational Autoencoder Wasserstein Generative Adversarial Network.","authors":"Jothi Shri Sankar, Saravanan Dhatchnamurthy, Anitha Mary X, Keerat Kumar Gupta","doi":"10.1080/0954898X.2024.2304214","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the massive growth in Internet of Things (IoT) devices, it is necessary to properly identify, authorize, and protect against attacks the devices connected to the particular network. In this manuscript, IoT Device Type Identification based on Variational Auto Encoder Wasserstein Generative Adversarial Network optimized with Pelican Optimization Algorithm (IoT-DTI-VAWGAN-POA) is proposed for Prolonging IoT Security. The proposed technique comprises three phases, such as data collection, feature extraction, and IoT device type detection. Initially, real network traffic dataset is gathered by distinct IoT device types, like baby monitor, security camera, etc. For feature extraction phase, the network traffic feature vector comprises packet sizes, Mean, Variance, Kurtosis derived by Adaptive and concise empirical wavelet transforms. Then, the extracting features are supplied to VAWGAN is used to identify the IoT devices as known or unknown. Then Pelican Optimization Algorithm (POA) is considered to optimize the weight factors of VAWGAN for better IoT device type identification. The proposed IoT-DTI-VAWGAN-POA method is implemented in Python and proficiency is examined under the performance metrics, like accuracy, precision, f-measure, sensitivity, Error rate, computational complexity, and RoC. It provides 33.41%, 32.01%, and 31.65% higher accuracy, and 44.78%, 43.24%, and 48.98% lower error rate compared to the existing methods.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"278-299"},"PeriodicalIF":1.1000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2304214","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the massive growth in Internet of Things (IoT) devices, it is necessary to properly identify, authorize, and protect against attacks the devices connected to the particular network. In this manuscript, IoT Device Type Identification based on Variational Auto Encoder Wasserstein Generative Adversarial Network optimized with Pelican Optimization Algorithm (IoT-DTI-VAWGAN-POA) is proposed for Prolonging IoT Security. The proposed technique comprises three phases, such as data collection, feature extraction, and IoT device type detection. Initially, real network traffic dataset is gathered by distinct IoT device types, like baby monitor, security camera, etc. For feature extraction phase, the network traffic feature vector comprises packet sizes, Mean, Variance, Kurtosis derived by Adaptive and concise empirical wavelet transforms. Then, the extracting features are supplied to VAWGAN is used to identify the IoT devices as known or unknown. Then Pelican Optimization Algorithm (POA) is considered to optimize the weight factors of VAWGAN for better IoT device type identification. The proposed IoT-DTI-VAWGAN-POA method is implemented in Python and proficiency is examined under the performance metrics, like accuracy, precision, f-measure, sensitivity, Error rate, computational complexity, and RoC. It provides 33.41%, 32.01%, and 31.65% higher accuracy, and 44.78%, 43.24%, and 48.98% lower error rate compared to the existing methods.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.