JLeNeT: Jaccard LeNet for Parkinson's disease detection and severity level classification using voice signal in IoT environment.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2025-03-12 DOI:10.1080/0954898X.2025.2453032
Sundaresan Pragadeeswaran, Subramanian Kannimuthu
{"title":"JLeNeT: Jaccard LeNet for Parkinson's disease detection and severity level classification using voice signal in IoT environment.","authors":"Sundaresan Pragadeeswaran, Subramanian Kannimuthu","doi":"10.1080/0954898X.2025.2453032","DOIUrl":null,"url":null,"abstract":"<p><p>The neurodegenerative disorder called Parkinson's disease (PD) is one of the most common diseases now a day. In this research, PD is detected and severity classification is done using the proposed Jaccard LeNet (JLeNet) with the help of voice signal in the IoT environment. Here, the IoT simulation is done. Initially, from which voice signal is collected and the routing process is done by the proposed Chimp Wild Geese Algorithm (ChWGA). This ChWGA is the combination of the Wild Geese Algorithm (WGA) and Chimp Optimization Algorithm (ChOA). Finally, at Base Station (BS), PD is detected and classified. The input voice signal is fed for pre-processing conducted by an adaptive Kalman filter. Following this, feature extraction and feature selection are conducted, where Harmonic mean similarity helps in feature selection. Here, PD is detected using JLeNet, which is the hybridization of LeNet with the Jaccard similarity measure. In this work, routing metrics of energy and delay are superior and recorded with the values of 0.309 J and 0.434 ms for the ChWGA. Moreover, the proposed method attains an Accuracy of 0.910, True Positive Rate (TPR) of 0.903, and True Negative Rate (TNR) of 0.918.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-30"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2025.2453032","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The neurodegenerative disorder called Parkinson's disease (PD) is one of the most common diseases now a day. In this research, PD is detected and severity classification is done using the proposed Jaccard LeNet (JLeNet) with the help of voice signal in the IoT environment. Here, the IoT simulation is done. Initially, from which voice signal is collected and the routing process is done by the proposed Chimp Wild Geese Algorithm (ChWGA). This ChWGA is the combination of the Wild Geese Algorithm (WGA) and Chimp Optimization Algorithm (ChOA). Finally, at Base Station (BS), PD is detected and classified. The input voice signal is fed for pre-processing conducted by an adaptive Kalman filter. Following this, feature extraction and feature selection are conducted, where Harmonic mean similarity helps in feature selection. Here, PD is detected using JLeNet, which is the hybridization of LeNet with the Jaccard similarity measure. In this work, routing metrics of energy and delay are superior and recorded with the values of 0.309 J and 0.434 ms for the ChWGA. Moreover, the proposed method attains an Accuracy of 0.910, True Positive Rate (TPR) of 0.903, and True Negative Rate (TNR) of 0.918.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
A multi-objective function for deep learning-based automatic energy efficiency power allocation in multicarrier noma system using hybrid heuristic improvement. Improved bounding box segmentation technique for crowd anomaly detection with optimal trained convolutional neural network. JLeNeT: Jaccard LeNet for Parkinson's disease detection and severity level classification using voice signal in IoT environment. Hybrid ladybug Hawk optimization-enabled deep learning for multimodal Parkinson's disease classification using voice signals and hand-drawn images. RESNET-50 with ontological visual features based medicinal plants classification.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1