{"title":"SiG: A Siamese-based Graph Convolutional Network to Align Knowledge in Autonomous Transportation Systems","authors":"Mai Hao, Ming Cai, Minghui Fang, Linlin You","doi":"10.1145/3643861","DOIUrl":null,"url":null,"abstract":"<p>Domain knowledge is gradually renovating its attributes to exhibit distinct features in autonomy, propelled by the shift of modern transportation systems (TS) towards autonomous TS (ATS) comprising three progressive generations. Knowledge graph (KG) and its corresponding versions can help depict the evolving TS. Given that KG versions exhibit asymmetry primarily due to variations in evolved knowledge, it is imperative to harmonize the evolved knowledge embodied by the entity across disparate KG versions. Hence, this paper proposes a siamese-based graph convolutional network (GCN) model, namely SiG, to address unresolved issues of low accuracy, efficiency, and effectiveness in aligning asymmetric KGs. SiG can optimize entity alignment in ATS and support the analysis of future-stage ATS development. Such a goal is attained through: a) generating unified KGs to enhance data quality, b) defining graph split to facilitate entire-graph computation, c) enhancing GCN to extract intrinsic features, and d) designing siamese network to train asymmetric KGs. The evaluation results suggest that SiG surpasses other commonly employed models, resulting in average improvements of 23.90% and 37.89% in accuracy and efficiency, respectively. These findings have significant implications for TS evolution analysis and offer a novel perspective for research on complex systems limited by continuously updated knowledge.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":"51 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643861","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Domain knowledge is gradually renovating its attributes to exhibit distinct features in autonomy, propelled by the shift of modern transportation systems (TS) towards autonomous TS (ATS) comprising three progressive generations. Knowledge graph (KG) and its corresponding versions can help depict the evolving TS. Given that KG versions exhibit asymmetry primarily due to variations in evolved knowledge, it is imperative to harmonize the evolved knowledge embodied by the entity across disparate KG versions. Hence, this paper proposes a siamese-based graph convolutional network (GCN) model, namely SiG, to address unresolved issues of low accuracy, efficiency, and effectiveness in aligning asymmetric KGs. SiG can optimize entity alignment in ATS and support the analysis of future-stage ATS development. Such a goal is attained through: a) generating unified KGs to enhance data quality, b) defining graph split to facilitate entire-graph computation, c) enhancing GCN to extract intrinsic features, and d) designing siamese network to train asymmetric KGs. The evaluation results suggest that SiG surpasses other commonly employed models, resulting in average improvements of 23.90% and 37.89% in accuracy and efficiency, respectively. These findings have significant implications for TS evolution analysis and offer a novel perspective for research on complex systems limited by continuously updated knowledge.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.