Status quo on recycling of waste crystalline silicon for photovoltaic modules and its implications for China’s photovoltaic industry

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS Frontiers in Energy Pub Date : 2024-01-15 DOI:10.1007/s11708-024-0923-y
Yichen Zhou, Jia Wen, Yulin Zheng, Wei Yang, Yuru Zhang, Wenxing Cheng
{"title":"Status quo on recycling of waste crystalline silicon for photovoltaic modules and its implications for China’s photovoltaic industry","authors":"Yichen Zhou,&nbsp;Jia Wen,&nbsp;Yulin Zheng,&nbsp;Wei Yang,&nbsp;Yuru Zhang,&nbsp;Wenxing Cheng","doi":"10.1007/s11708-024-0923-y","DOIUrl":null,"url":null,"abstract":"<div><p>As a clean and efficient renewable energy source, solar energy has been rapidly applied worldwide. The growth rate of China’s installed capacity ranks first in the world. However, the life span of photovoltaic (PV) modules is 25 to 30 years, and the rapid development of installed capacity indicates that a large number of PV modules will be decommissioned in the future. Therefore, the ongoing treatment of the scrapped PV waste cells in the near future requires urgent plans and countermeasures. Proper recycling and disposal of decommissioned PV modules is a practical requirement for the sustainable development of the country and industry. Crystalline silicon (c-Si) solar cells currently occupy 85%–90% of the market share, and some scholars have begun to seek the utilization pathways of the waste Si in and outside the PV industry. In this paper, the research status of the separation and recycling process of crystalline Si PV modules is reviewed, and the recycling ways of crystalline silicon are particularly focused on. In addition, the current bottlenecks in the PV recycling industry in China are analyzed and some suggestions on the sustainable development of the PV industry are proposed.</p></div>","PeriodicalId":570,"journal":{"name":"Frontiers in Energy","volume":"18 5","pages":"685 - 698"},"PeriodicalIF":3.1000,"publicationDate":"2024-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Energy","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11708-024-0923-y","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

As a clean and efficient renewable energy source, solar energy has been rapidly applied worldwide. The growth rate of China’s installed capacity ranks first in the world. However, the life span of photovoltaic (PV) modules is 25 to 30 years, and the rapid development of installed capacity indicates that a large number of PV modules will be decommissioned in the future. Therefore, the ongoing treatment of the scrapped PV waste cells in the near future requires urgent plans and countermeasures. Proper recycling and disposal of decommissioned PV modules is a practical requirement for the sustainable development of the country and industry. Crystalline silicon (c-Si) solar cells currently occupy 85%–90% of the market share, and some scholars have begun to seek the utilization pathways of the waste Si in and outside the PV industry. In this paper, the research status of the separation and recycling process of crystalline Si PV modules is reviewed, and the recycling ways of crystalline silicon are particularly focused on. In addition, the current bottlenecks in the PV recycling industry in China are analyzed and some suggestions on the sustainable development of the PV industry are proposed.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
光伏组件废晶体硅回收利用现状及其对中国光伏产业的影响
摘要 作为一种清洁高效的可再生能源,太阳能在全球范围内得到了迅速应用。中国的装机容量增长率位居世界第一。然而,光伏组件的使用寿命为 25 至 30 年,装机容量的快速发展预示着未来将有大量光伏组件退役。因此,如何在短期内持续处理报废的光伏废电池,亟需制定计划和对策。妥善回收和处理退役光伏组件是国家和行业可持续发展的现实需要。晶体硅(c-Si)太阳能电池目前占据了 85%-90% 的市场份额,一些学者已经开始在光伏产业内外寻求废硅的利用途径。本文综述了晶体硅光伏组件分离与回收工艺的研究现状,并特别关注了晶体硅的回收途径。此外,还分析了当前中国光伏回收产业的瓶颈,并对光伏产业的可持续发展提出了一些建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Energy
Frontiers in Energy Energy-Energy Engineering and Power Technology
CiteScore
5.90
自引率
6.90%
发文量
708
期刊介绍: Frontiers in Energy, an interdisciplinary and peer-reviewed international journal launched in January 2007, seeks to provide a rapid and unique platform for reporting the most advanced research on energy technology and strategic thinking in order to promote timely communication between researchers, scientists, engineers, and policy makers in the field of energy. Frontiers in Energy aims to be a leading peer-reviewed platform and an authoritative source of information for analyses, reviews and evaluations in energy engineering and research, with a strong focus on energy analysis, energy modelling and prediction, integrated energy systems, energy conversion and conservation, energy planning and energy on economic and policy issues. Frontiers in Energy publishes state-of-the-art review articles, original research papers and short communications by individual researchers or research groups. It is strictly peer-reviewed and accepts only original submissions in English. The scope of the journal is broad and covers all latest focus in current energy research. High-quality papers are solicited in, but are not limited to the following areas: -Fundamental energy science -Energy technology, including energy generation, conversion, storage, renewables, transport, urban design and building efficiency -Energy and the environment, including pollution control, energy efficiency and climate change -Energy economics, strategy and policy -Emerging energy issue
期刊最新文献
Performance analysis of a novel medium temperature compressed air energy storage system based on inverter-driven compressor pressure regulation Impact of bimetallic synergies on Mo-doping NiFeOOH: Insights into enhanced OER activity and reconstructed electronic structure Performance-enhanced direct ammonia protonic ceramic fuel cells using CeO2-supported Ni and Ru catalyst layer Low-carbon collaborative dual-layer optimization for energy station considering joint electricity and heat demand response Oxygen reduction reaction performance of Fe-N-C catalyst with dual nitrogen source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1