Brendon A. Bradley, Sanjay S. Bora, Robin L. Lee, Elena F. Manea, Matthew C. Gerstenberger, Peter J. Stafford, Gail M. Atkinson, Graeme Weatherill, Jesse Hutchinson, Christopher A. de la Torre, Anne M. Hulsey, Anna E. Kaiser
{"title":"The Ground‐Motion Characterization Model for the 2022 New Zealand National Seismic Hazard Model","authors":"Brendon A. Bradley, Sanjay S. Bora, Robin L. Lee, Elena F. Manea, Matthew C. Gerstenberger, Peter J. Stafford, Gail M. Atkinson, Graeme Weatherill, Jesse Hutchinson, Christopher A. de la Torre, Anne M. Hulsey, Anna E. Kaiser","doi":"10.1785/0120230170","DOIUrl":null,"url":null,"abstract":"This article summarizes the ground‐motion characterization (GMC) model component of the 2022 New Zealand National Seismic Hazard Model (2022 NZ NSHM). The model development process included establishing a NZ‐specific context through the creation of a new ground‐motion database, and consideration of alternative ground‐motion models (GMMs) that have been historically used in NZ or have been recently developed for global application with or without NZ‐specific regionalizations. Explicit attention was given to models employing state‐of‐the‐art approaches in terms of their ability to provide robust predictions when extrapolated beyond the predictor variable scenarios that are well constrained by empirical data alone. We adopted a “hybrid” logic tree that combined both a “weights‐on‐models” approach along with backbone models (i.e., metamodels), the former being the conventional approach to GMC logic tree modeling for NSHM applications using published models, and the latter being increasingly used in research literature and site‐specific studies. In this vein, two NZ‐specific GMMs were developed employing the backbone model construct. All of the adopted subduction GMMs in the logic tree were further modified from their published versions to include the effects of increased attenuation in the back‐arc region; and, all but one model was modified to account for the reduction in ground‐motion standard deviations as a result of nonlinear surficial site response. As well as being based on theoretical arguments, these adjustments were implemented as a result of hazard sensitivity analyses using models without these effects, which we consider gave unrealistically high hazard estimates.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"21 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120230170","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
This article summarizes the ground‐motion characterization (GMC) model component of the 2022 New Zealand National Seismic Hazard Model (2022 NZ NSHM). The model development process included establishing a NZ‐specific context through the creation of a new ground‐motion database, and consideration of alternative ground‐motion models (GMMs) that have been historically used in NZ or have been recently developed for global application with or without NZ‐specific regionalizations. Explicit attention was given to models employing state‐of‐the‐art approaches in terms of their ability to provide robust predictions when extrapolated beyond the predictor variable scenarios that are well constrained by empirical data alone. We adopted a “hybrid” logic tree that combined both a “weights‐on‐models” approach along with backbone models (i.e., metamodels), the former being the conventional approach to GMC logic tree modeling for NSHM applications using published models, and the latter being increasingly used in research literature and site‐specific studies. In this vein, two NZ‐specific GMMs were developed employing the backbone model construct. All of the adopted subduction GMMs in the logic tree were further modified from their published versions to include the effects of increased attenuation in the back‐arc region; and, all but one model was modified to account for the reduction in ground‐motion standard deviations as a result of nonlinear surficial site response. As well as being based on theoretical arguments, these adjustments were implemented as a result of hazard sensitivity analyses using models without these effects, which we consider gave unrealistically high hazard estimates.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.