{"title":"Effects of gelatin type and concentration on the preparation and properties of freeze-dried fish oil powders","authors":"Mengyang Yang, Jiawei Peng, Cuiping Shi, Ye Zi, Yulu Zheng, Xichang Wang, Jian Zhong","doi":"10.1038/s41538-024-00251-4","DOIUrl":null,"url":null,"abstract":"The effects of gelatin type (porcine skin gelatin, PSG; bovine skin gelatin, BSG; fish gelatin, FG; or cold-water fish skin gelatin, CFG) and concentration on the preparation and properties of fish oil powders were investigated in this work. The oil powders were prepared using the combination method of gelatin-sodium hexametaphosphate complex coacervation with starch sodium octenyl succinate (SSOS)-aided freeze-drying. Compared with the other gelatins, CFG—with an unobvious isoelectric point, a lower molecular weight, more hydrogen bonds, and longer gel formation time—could not form complex coacervates, which are necessary to prepare oil powders. For oil powders obtained from the other gelatins, gelatin type and concentration did not have obvious effects on microscale morphologies; they did, however, have significant effects on physicochemical properties. The highest peroxide values of the oil powders were mainly dependent on the gelatins, expressed in the following manner: PSG (153 ± 5 – 168 ± 3 meq/Kg oil) < BSG (176 ± 5 – 188 ± 1 meq/Kg oil) < FG (196 ± 11 – 201 ± 22 meq/Kg oil). Acidic and neutral pH could not dissolve the complex coacervates. However, the oil powders could be quickly dissolved to form emulsion droplets in the gastric phase, and that SSOS increased coacervate stability and promoted oil digestion during the in vitro gastrointestinal process. In sum, this study contributes fundamental information to understanding the development of fish oil solid encapsulation preparations.","PeriodicalId":19367,"journal":{"name":"NPJ Science of Food","volume":" ","pages":"1-11"},"PeriodicalIF":6.3000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41538-024-00251-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Science of Food","FirstCategoryId":"97","ListUrlMain":"https://www.nature.com/articles/s41538-024-00251-4","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The effects of gelatin type (porcine skin gelatin, PSG; bovine skin gelatin, BSG; fish gelatin, FG; or cold-water fish skin gelatin, CFG) and concentration on the preparation and properties of fish oil powders were investigated in this work. The oil powders were prepared using the combination method of gelatin-sodium hexametaphosphate complex coacervation with starch sodium octenyl succinate (SSOS)-aided freeze-drying. Compared with the other gelatins, CFG—with an unobvious isoelectric point, a lower molecular weight, more hydrogen bonds, and longer gel formation time—could not form complex coacervates, which are necessary to prepare oil powders. For oil powders obtained from the other gelatins, gelatin type and concentration did not have obvious effects on microscale morphologies; they did, however, have significant effects on physicochemical properties. The highest peroxide values of the oil powders were mainly dependent on the gelatins, expressed in the following manner: PSG (153 ± 5 – 168 ± 3 meq/Kg oil) < BSG (176 ± 5 – 188 ± 1 meq/Kg oil) < FG (196 ± 11 – 201 ± 22 meq/Kg oil). Acidic and neutral pH could not dissolve the complex coacervates. However, the oil powders could be quickly dissolved to form emulsion droplets in the gastric phase, and that SSOS increased coacervate stability and promoted oil digestion during the in vitro gastrointestinal process. In sum, this study contributes fundamental information to understanding the development of fish oil solid encapsulation preparations.
期刊介绍:
npj Science of Food is an online-only and open access journal publishes high-quality, high-impact papers related to food safety, security, integrated production, processing and packaging, the changes and interactions of food components, and the influence on health and wellness properties of food. The journal will support fundamental studies that advance the science of food beyond the classic focus on processing, thereby addressing basic inquiries around food from the public and industry. It will also support research that might result in innovation of technologies and products that are public-friendly while promoting the United Nations sustainable development goals.