Boosting sodium-ion battery performance by nitrogen-doped bamboo-like branched carbon nanotube

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Nano Pub Date : 2024-02-02 DOI:10.1016/j.mtnano.2024.100456
Yongsheng Zhou , Yihao Mo , You Liu , Erhui Zhang , Kaiyuan Wei , Yingchun Zhu , Bingshe Xu , Xueji Zhang
{"title":"Boosting sodium-ion battery performance by nitrogen-doped bamboo-like branched carbon nanotube","authors":"Yongsheng Zhou ,&nbsp;Yihao Mo ,&nbsp;You Liu ,&nbsp;Erhui Zhang ,&nbsp;Kaiyuan Wei ,&nbsp;Yingchun Zhu ,&nbsp;Bingshe Xu ,&nbsp;Xueji Zhang","doi":"10.1016/j.mtnano.2024.100456","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Na-ion batteries have been considered promising substitutes for lithium-ion batteries due to the abundance of </span>sodium<span> resources. However, their large-scale application is limited by issues such as low capacity and poor rate capability. Here, we report a branched bamboo-like carbon nanotube (BBCNT) anode for Na</span></span><sup>+</sup> storage. The obtained BBCNT material exhibits nitrogen-doping active sites, suitable mesopores, and bamboo-like hollow structure with numerous branches. The optimized BBCNT-2 material delivers a reversible capacity of 416 mAh g<sup>−1</sup> at 100 mA g<sup>−1</sup>, superior rate capability of 257 mAh g<sup>−1</sup> at 2 A g<sup>−1</sup><span>, and excellent reversible capacity for 4500 cycles. Owing to the fast charge diffusion, BBCNT-2 achieved an excellent capacity of 209 and 196 mAh g</span><sup>−1</sup> under the current densities of 16 000 and 32 000 mA g<sup>−1</sup>, respectively. The ex-situ Raman analysis reveals that BBCNT-2 retains its structural features during a complete intercalation/deintercalation cycle of Na<sup>+</sup>. This work will shed lights on the design of high-performance carbon for low-cost and high-performance batteries.</p></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"25 ","pages":"Article 100456"},"PeriodicalIF":8.2000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842024000063","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Na-ion batteries have been considered promising substitutes for lithium-ion batteries due to the abundance of sodium resources. However, their large-scale application is limited by issues such as low capacity and poor rate capability. Here, we report a branched bamboo-like carbon nanotube (BBCNT) anode for Na+ storage. The obtained BBCNT material exhibits nitrogen-doping active sites, suitable mesopores, and bamboo-like hollow structure with numerous branches. The optimized BBCNT-2 material delivers a reversible capacity of 416 mAh g−1 at 100 mA g−1, superior rate capability of 257 mAh g−1 at 2 A g−1, and excellent reversible capacity for 4500 cycles. Owing to the fast charge diffusion, BBCNT-2 achieved an excellent capacity of 209 and 196 mAh g−1 under the current densities of 16 000 and 32 000 mA g−1, respectively. The ex-situ Raman analysis reveals that BBCNT-2 retains its structural features during a complete intercalation/deintercalation cycle of Na+. This work will shed lights on the design of high-performance carbon for low-cost and high-performance batteries.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用掺氮竹状支化碳纳米管提升钠离子电池性能
由于钠资源丰富,钠离子电池一直被认为是锂离子电池的理想替代品。然而,由于容量低、速率能力差等问题,其大规模应用受到了限制。在此,我们报告了一种用于储存 Na+ 的支化竹状碳纳米管(BBCNT)阳极。所获得的 BBCNT 材料具有氮掺杂活性位点、合适的中孔以及带有大量分支的竹节状中空结构。优化后的 BBCNT-2 材料在 100 mA g-1 电流条件下的可逆容量为 416 mAh g-1,在 2 A g-1 电流条件下的速率能力为 257 mAh g-1,并且在 4500 个循环周期内具有出色的可逆容量。由于电荷扩散速度快,BBCNT-2 在电流密度为 16 000 mA g-1 和 32 000 mA g-1 时分别实现了 209 mAh g-1 和 196 mAh g-1 的出色容量。原位拉曼分析表明,BBCNT-2 在 Na+ 的完整插层/脱插层循环过程中保持了其结构特征。这项工作将为低成本、高性能电池的高性能碳设计提供启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
11.30
自引率
3.90%
发文量
130
审稿时长
31 days
期刊介绍: Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to: Nanoscale synthesis and assembly Nanoscale characterization Nanoscale fabrication Nanoelectronics and molecular electronics Nanomedicine Nanomechanics Nanosensors Nanophotonics Nanocomposites
期刊最新文献
Boosting non-volatile memory performance with exhalative annealing: A novel approach to low-temperature crystallization of hafnia based ferroelectric Top-down fabrication of Si nanotube arrays using nanoimprint lithography and spacer patterning for electronic and optoelectronic applications Nanoscale mapping of local intrinsic strain-induced anomalous bandgap variations in WSe2 using selective-wavelength scanning photoconductivity microscopy Neutrophil-inspired Zn and Zn@ZnO microparticles decorated with Cu nanoparticles self-release oxidized halogen antimicrobials In-depth conduction mechanism analysis of programmable memristor and its biosynaptic applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1