Scalable mechanical exfoliation of two-dimensional nanosheets by polymer-assisted dry ball-mill of layered materials and insights from machine learning
{"title":"Scalable mechanical exfoliation of two-dimensional nanosheets by polymer-assisted dry ball-mill of layered materials and insights from machine learning","authors":"Jing Zhang , Tianshu Zhai , Yunrui Yan, Qiyi Fang, Yifeng Liu, Yifan Zhu, Weiran Tu, Chen-Yang Lin, Yuguo Wang, Jun Lou","doi":"10.1016/j.mtnano.2025.100604","DOIUrl":null,"url":null,"abstract":"<div><div>To fully capitalize on the unique properties of 2D materials, cost-effective techniques for producing high-quality 2D flakes at scale are crucial. In this work, we show that dry ball-milling, a commonly used powder-processing technique, can be effectively and efficiently upgraded into an automated exfoliation technique. It is done by adding polymer as adhesives into a ball mill to mimic the well-known tape exfoliation process, which is known to produce 2D flakes with the highest quality but is limited by its extremely low efficiency on large-scale production. Seventeen types of commonly seen polymers, including both artificial and natural ones, have been examined as additives to dry ball-mill hexagonal boron nitride. A parallel comparison between different additives identifies low-cost natural polymers such as starch as promising dry ball-mill additives to produce ultrathin flakes with the largest aspect ratio. The mechanical, thermal, and surface properties of the polymers are proposed as key features that simultaneously determine the exfoliation efficiency, and their ranking of importance in the mechanical exfoliation process is revealed using a machine learning model. Finally, the potential of the polymer-assisted ball-mill exfoliation method as a universal way to produce ultra-thin 2D nanosheets is also demonstrated.</div></div>","PeriodicalId":48517,"journal":{"name":"Materials Today Nano","volume":"30 ","pages":"Article 100604"},"PeriodicalIF":8.2000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Nano","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588842025000355","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To fully capitalize on the unique properties of 2D materials, cost-effective techniques for producing high-quality 2D flakes at scale are crucial. In this work, we show that dry ball-milling, a commonly used powder-processing technique, can be effectively and efficiently upgraded into an automated exfoliation technique. It is done by adding polymer as adhesives into a ball mill to mimic the well-known tape exfoliation process, which is known to produce 2D flakes with the highest quality but is limited by its extremely low efficiency on large-scale production. Seventeen types of commonly seen polymers, including both artificial and natural ones, have been examined as additives to dry ball-mill hexagonal boron nitride. A parallel comparison between different additives identifies low-cost natural polymers such as starch as promising dry ball-mill additives to produce ultrathin flakes with the largest aspect ratio. The mechanical, thermal, and surface properties of the polymers are proposed as key features that simultaneously determine the exfoliation efficiency, and their ranking of importance in the mechanical exfoliation process is revealed using a machine learning model. Finally, the potential of the polymer-assisted ball-mill exfoliation method as a universal way to produce ultra-thin 2D nanosheets is also demonstrated.
期刊介绍:
Materials Today Nano is a multidisciplinary journal dedicated to nanoscience and nanotechnology. The journal aims to showcase the latest advances in nanoscience and provide a platform for discussing new concepts and applications. With rigorous peer review, rapid decisions, and high visibility, Materials Today Nano offers authors the opportunity to publish comprehensive articles, short communications, and reviews on a wide range of topics in nanoscience. The editors welcome comprehensive articles, short communications and reviews on topics including but not limited to:
Nanoscale synthesis and assembly
Nanoscale characterization
Nanoscale fabrication
Nanoelectronics and molecular electronics
Nanomedicine
Nanomechanics
Nanosensors
Nanophotonics
Nanocomposites