High salinity suppresses nitrogen cycle genes and shifts nitrifier communities in the black mangrove rhizosphere

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-02-02 DOI:10.1016/j.rhisph.2023.100846
Ingrid Figueroa-Galvis , Orson Mestanza , Andrea Muñoz , Victor A. Ramos-Duarte , Javier Vanegas
{"title":"High salinity suppresses nitrogen cycle genes and shifts nitrifier communities in the black mangrove rhizosphere","authors":"Ingrid Figueroa-Galvis ,&nbsp;Orson Mestanza ,&nbsp;Andrea Muñoz ,&nbsp;Victor A. Ramos-Duarte ,&nbsp;Javier Vanegas","doi":"10.1016/j.rhisph.2023.100846","DOIUrl":null,"url":null,"abstract":"<div><p>High salinity inhibits the nitrogen cycle, which is crucial to biogeochemical changes in coastal mangrove ecosystems. We examined <em>Avicennia germinans</em> rhizosphere soil over a salinity gradient (electrical conductivities of 5.27 mS cm<sup>−1</sup>–38.64 mS cm<sup>−1</sup>) to see how high salinity affects the bacterial community and metabolic nitrogen activities. Amplicon sequencing of the 16S rRNA gene examined the bacterial population profile, whereas full shotgun metagenome sequencing assessed functional genetic potential. <em>Bacillus</em>, <em>Desulfuromonas</em>, <em>Methyloceanibacter</em>, and <em>Nitrospira</em> dominated the genera, whereas <em>Proteobacteria</em>, <em>Actinobacteria</em>, and <em>Bacteroidetes</em> dominated the phyla. <em>Nitrospirae</em> dominated at high salinity. High soil salinity suppressed nitrogen cycle gene abundances: <em>nifH</em>, <em>nxrAB</em>, <em>nirS</em>, <em>nirK</em>, <em>norB</em>, <em>nirB</em>, and <em>nirA</em>. Ammonia-oxidizing bacteria like <em>Nitrosococcus</em> and <em>Nitrosomonas</em> decreased with salinity in the nitrifier population discovered by amplicon sequencing. Nitrite-oxidizing bacteria like <em>Nitrospira</em> and <em>Nitrospina</em> rose at high salinity, whereas <em>Nitrococcus</em> and <em>Nitrolancea</em> declined. Salinity reduces nitrogen gene abundances in most nitrifier community members, inhibiting the nitrogen cycle.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452219823001854","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

High salinity inhibits the nitrogen cycle, which is crucial to biogeochemical changes in coastal mangrove ecosystems. We examined Avicennia germinans rhizosphere soil over a salinity gradient (electrical conductivities of 5.27 mS cm−1–38.64 mS cm−1) to see how high salinity affects the bacterial community and metabolic nitrogen activities. Amplicon sequencing of the 16S rRNA gene examined the bacterial population profile, whereas full shotgun metagenome sequencing assessed functional genetic potential. Bacillus, Desulfuromonas, Methyloceanibacter, and Nitrospira dominated the genera, whereas Proteobacteria, Actinobacteria, and Bacteroidetes dominated the phyla. Nitrospirae dominated at high salinity. High soil salinity suppressed nitrogen cycle gene abundances: nifH, nxrAB, nirS, nirK, norB, nirB, and nirA. Ammonia-oxidizing bacteria like Nitrosococcus and Nitrosomonas decreased with salinity in the nitrifier population discovered by amplicon sequencing. Nitrite-oxidizing bacteria like Nitrospira and Nitrospina rose at high salinity, whereas Nitrococcus and Nitrolancea declined. Salinity reduces nitrogen gene abundances in most nitrifier community members, inhibiting the nitrogen cycle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高盐度抑制氮循环基因并改变黑红树林根瘤层中的硝化细菌群落
高盐度会抑制氮循环,而氮循环对沿海红树林生态系统的生物地球化学变化至关重要。我们研究了盐度梯度(电导率为 5.27 mS cm-1-38.64 mS cm-1)下的根瘤藻土壤,以了解高盐度如何影响细菌群落和氮代谢活动。16S rRNA 基因的扩增子测序研究了细菌种群概况,而全枪元基因组测序则评估了功能基因潜力。芽孢杆菌、脱硫单胞菌、甲基海洋杆菌和硝化细菌在属中占主导地位,而蛋白杆菌、放线菌和类杆菌在门中占主导地位。在高盐度条件下,硝化细菌占优势。高盐度土壤抑制了氮循环基因的丰度:nifH、nxrAB、nirS、nirK、norB、nirB 和 nirA。在通过扩增子测序发现的硝化菌群体中,氨氧化细菌(如亚硝化球菌和亚硝化单胞菌)随着盐度的增加而减少。在高盐度条件下,亚硝酸盐氧化细菌(如亚硝酸螺菌和亚硝酸单胞菌)数量增加,而亚硝酸球菌和亚硝酸单胞菌数量减少。盐度降低了大多数硝化细菌群落成员的氮基因丰度,抑制了氮循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1