{"title":"RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment","authors":"Jianfeng Li, Juan Dai, Zhong Su, Cui Zhu","doi":"10.1007/s10846-023-02046-3","DOIUrl":null,"url":null,"abstract":"<p>Most current research on dynamic visual Simultaneous Localization and Mapping (SLAM) systems focuses on scenes where static objects occupy most of the environment. However, in densely populated indoor environments, the movement of the crowd can lead to the loss of feature information, thereby diminishing the system’s robustness and accuracy. This paper proposes a visual SLAM algorithm for dense crowd environments based on a combination of the ORB-SLAM2 framework and RGB-D cameras. Firstly, we introduced a dedicated target detection network thread and improved the performance of the target detection network, enhancing its detection coverage in crowded environments, resulting in a 41.5% increase in average accuracy. Additionally, we found that some feature points other than humans in the detection box were mistakenly deleted. Therefore, we proposed an algorithm based on standard deviation fitting to effectively filter out the features. Finally, our system is evaluated on the TUM and Bonn RGB-D dynamic datasets and compared with ORB-SLAM2 and other state-of-the-art visual dynamic SLAM methods. The results indicate that our system’s pose estimation error is reduced by at least 93.60% and 97.11% compared to ORB-SLAM2 in high dynamic environments and the Bonn RGB-D dynamic dataset, respectively. Our method demonstrates comparable performance compared to other recent visual dynamic SLAM methods.</p>","PeriodicalId":54794,"journal":{"name":"Journal of Intelligent & Robotic Systems","volume":"2 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent & Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10846-023-02046-3","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Most current research on dynamic visual Simultaneous Localization and Mapping (SLAM) systems focuses on scenes where static objects occupy most of the environment. However, in densely populated indoor environments, the movement of the crowd can lead to the loss of feature information, thereby diminishing the system’s robustness and accuracy. This paper proposes a visual SLAM algorithm for dense crowd environments based on a combination of the ORB-SLAM2 framework and RGB-D cameras. Firstly, we introduced a dedicated target detection network thread and improved the performance of the target detection network, enhancing its detection coverage in crowded environments, resulting in a 41.5% increase in average accuracy. Additionally, we found that some feature points other than humans in the detection box were mistakenly deleted. Therefore, we proposed an algorithm based on standard deviation fitting to effectively filter out the features. Finally, our system is evaluated on the TUM and Bonn RGB-D dynamic datasets and compared with ORB-SLAM2 and other state-of-the-art visual dynamic SLAM methods. The results indicate that our system’s pose estimation error is reduced by at least 93.60% and 97.11% compared to ORB-SLAM2 in high dynamic environments and the Bonn RGB-D dynamic dataset, respectively. Our method demonstrates comparable performance compared to other recent visual dynamic SLAM methods.
期刊介绍:
The Journal of Intelligent and Robotic Systems bridges the gap between theory and practice in all areas of intelligent systems and robotics. It publishes original, peer reviewed contributions from initial concept and theory to prototyping to final product development and commercialization.
On the theoretical side, the journal features papers focusing on intelligent systems engineering, distributed intelligence systems, multi-level systems, intelligent control, multi-robot systems, cooperation and coordination of unmanned vehicle systems, etc.
On the application side, the journal emphasizes autonomous systems, industrial robotic systems, multi-robot systems, aerial vehicles, mobile robot platforms, underwater robots, sensors, sensor-fusion, and sensor-based control. Readers will also find papers on real applications of intelligent and robotic systems (e.g., mechatronics, manufacturing, biomedical, underwater, humanoid, mobile/legged robot and space applications, etc.).