{"title":"A Detailed Analysis of Mixture Stratification on Flame Displacement Speed for Syngas Combustion","authors":"Rahul Patil, Sheshadri Sreedhara","doi":"10.1007/s10494-024-00530-w","DOIUrl":null,"url":null,"abstract":"<div><p>Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (<i>ϕ</i>) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (<i>l</i><sub><i>ϕ</i></sub>) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm<sup>2</sup>. The variations in the degree of stratification were simulated varying <i>l</i><sub><i>ϕ</i></sub> and fluctuations <i>ϕ</i> for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (<i>S</i><sub><i>d</i></sub>) and its components, viz. reaction rate (<i>S</i><sub><i>r</i></sub>), normal diffusion (<i>S</i><sub><i>n</i></sub>), tangential (<i>S</i><sub><i>t</i></sub>), and inhomogeneity (<i>S</i><sub><i>z</i></sub>). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner <i>ϕ</i>, causing reduction in components of <i>S</i><sub><i>d</i></sub>. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (<i>c</i><sup><i>*</i></sup>) to a higher reaction progress variable (<i>c</i>). This shifting of <i>c</i><sup><i>*</i></sup>, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity <i>Le</i> simulations, <i>S</i><sub><i>n</i></sub> was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in <i>S</i><sub><i>d</i></sub>.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"112 4","pages":"1105 - 1126"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00530-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Gasoline direct injection engines can provide higher thermal efficiency and lower emissions than that for engines using conventional combustion techniques. Compositional stratification inside the combustion chamber opens possibilities for ultra-lean and low-temperature combustion. To explore this further, 2D direct numerical simulation (DNS) has been performed to investigate the propagation of syngas flame in an equivalence ratio (ϕ) stratified medium. Several aspects of flame propagation, such as effect of integral scale of mixing (lϕ) on the non-monotonic behavior of flame propagation, contribution of each chemical reaction to heat release rate (HRR), and the effect of differential diffusion were analyzed using DNS-data. A spherically expanding flame has been initiated with a hotspot at the center of the square domain of size 2.4 × 2.4 cm2. The variations in the degree of stratification were simulated varying lϕ and fluctuations ϕ for initial mixture distribution. Further this DNS-data has been used to analyze effects of stratification on flame displacement speed (Sd) and its components, viz. reaction rate (Sr), normal diffusion (Sn), tangential (St), and inhomogeneity (Sz). The results reveal that stratification-induced variations in thermal diffusivity resulted in thermal runaways. These thermal runaways influence the extent of burning for simulated cases. The increase in degree of stratification resulted in flame preferably propagating towards leaner ϕ, causing reduction in components of Sd. The preferential propagation of flame also resulted in shifting of peak reaction rate for fuel species (c*) to a higher reaction progress variable (c). This shifting of c*, lead to a reduction in the HRR contribution of reactions that attain their peak near the production zone of H and OH species. For unity Le simulations, Sn was observed to be reduced drastically compared to cases with differential diffusion, resulting in an overall reduction in Sd.
期刊介绍:
Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles.
Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.