Effects of Wall Temperature on Scalar and Turbulence Statistics During Premixed Flame–Wall Interaction Within Turbulent Boundary Layers

IF 2 3区 工程技术 Q3 MECHANICS Flow, Turbulence and Combustion Pub Date : 2025-01-16 DOI:10.1007/s10494-024-00603-w
Sanjeev Kr. Ghai, Umair Ahmed, Nilanjan Chakraborty
{"title":"Effects of Wall Temperature on Scalar and Turbulence Statistics During Premixed Flame–Wall Interaction Within Turbulent Boundary Layers","authors":"Sanjeev Kr. Ghai,&nbsp;Umair Ahmed,&nbsp;Nilanjan Chakraborty","doi":"10.1007/s10494-024-00603-w","DOIUrl":null,"url":null,"abstract":"<div><p>Direct numerical simulations (DNS) have been utilised to investigate the impact of different thermal wall boundary conditions on premixed V-flames interacting with walls in a turbulent channel flow configuration. Two boundary conditions are considered: isothermal walls, where the wall temperature is set either equal to the unburned mixture temperature or an elevated temperature, and adiabatic walls. An increase in wall temperature has been found to decrease the minimum flame quenching distance and increase the maximum wall heat flux magnitude. The analysis reveals notable differences in mean behaviours of the progress variable and non-dimensional temperature in response to thermal boundary conditions. At the upstream of the flame–wall interaction location, higher mean friction velocity values are observed for the case with elevated wall temperature compared to the other cases. However, during flame–wall interaction, friction velocity values decrease for isothermal walls but initially rise before decreasing for adiabatic walls, persisting at levels surpassing isothermal conditions. For all thermal wall boundary conditions, the mean scalar dissipation rates of the progress variable and non-dimensional temperature exhibit a decreasing trend towards the wall. Notably, in the case of isothermal wall boundary condition, a higher scalar dissipation rate for the non-dimensional temperature is observed in comparison to the scalar dissipation rate for the progress variable. Thermal boundary condition also has a significant impact on Reynolds stress components, turbulent kinetic energy, and dissipation rates, showing the highest magnitudes with isothermal case with elevated wall temperature and the lowest magnitude for the isothermal wall with unburned gas temperature. The findings of the current analysis suggest that thermal boundary conditions can potentially significantly affect trubulence closures in the context of Reynolds averaged Navier–Stokes simulations of premixed flame–wall interaction.</p></div>","PeriodicalId":559,"journal":{"name":"Flow, Turbulence and Combustion","volume":"114 2","pages":"421 - 448"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10494-024-00603-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Flow, Turbulence and Combustion","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10494-024-00603-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Direct numerical simulations (DNS) have been utilised to investigate the impact of different thermal wall boundary conditions on premixed V-flames interacting with walls in a turbulent channel flow configuration. Two boundary conditions are considered: isothermal walls, where the wall temperature is set either equal to the unburned mixture temperature or an elevated temperature, and adiabatic walls. An increase in wall temperature has been found to decrease the minimum flame quenching distance and increase the maximum wall heat flux magnitude. The analysis reveals notable differences in mean behaviours of the progress variable and non-dimensional temperature in response to thermal boundary conditions. At the upstream of the flame–wall interaction location, higher mean friction velocity values are observed for the case with elevated wall temperature compared to the other cases. However, during flame–wall interaction, friction velocity values decrease for isothermal walls but initially rise before decreasing for adiabatic walls, persisting at levels surpassing isothermal conditions. For all thermal wall boundary conditions, the mean scalar dissipation rates of the progress variable and non-dimensional temperature exhibit a decreasing trend towards the wall. Notably, in the case of isothermal wall boundary condition, a higher scalar dissipation rate for the non-dimensional temperature is observed in comparison to the scalar dissipation rate for the progress variable. Thermal boundary condition also has a significant impact on Reynolds stress components, turbulent kinetic energy, and dissipation rates, showing the highest magnitudes with isothermal case with elevated wall temperature and the lowest magnitude for the isothermal wall with unburned gas temperature. The findings of the current analysis suggest that thermal boundary conditions can potentially significantly affect trubulence closures in the context of Reynolds averaged Navier–Stokes simulations of premixed flame–wall interaction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Flow, Turbulence and Combustion
Flow, Turbulence and Combustion 工程技术-力学
CiteScore
5.70
自引率
8.30%
发文量
72
审稿时长
2 months
期刊介绍: Flow, Turbulence and Combustion provides a global forum for the publication of original and innovative research results that contribute to the solution of fundamental and applied problems encountered in single-phase, multi-phase and reacting flows, in both idealized and real systems. The scope of coverage encompasses topics in fluid dynamics, scalar transport, multi-physics interactions and flow control. From time to time the journal publishes Special or Theme Issues featuring invited articles. Contributions may report research that falls within the broad spectrum of analytical, computational and experimental methods. This includes research conducted in academia, industry and a variety of environmental and geophysical sectors. Turbulence, transition and associated phenomena are expected to play a significant role in the majority of studies reported, although non-turbulent flows, typical of those in micro-devices, would be regarded as falling within the scope covered. The emphasis is on originality, timeliness, quality and thematic fit, as exemplified by the title of the journal and the qualifications described above. Relevance to real-world problems and industrial applications are regarded as strengths.
期刊最新文献
Effects of Wall Temperature on Scalar and Turbulence Statistics During Premixed Flame–Wall Interaction Within Turbulent Boundary Layers Blowout and Blowoff Limits of Confined Coaxial Ammonia/Hydrogen/Nitrogen-Air Flames with Variable Ammonia Fraction Numerical and Experimental Study on the Deflagration Characteristics of Premixed CO in a Tube with Obstacles Relation Between 3 and 2D Wrinkling Factors in Turbulent Premixed Flames LES Prediction of the Ignition Probability Map for a Model Aeronautical Spray Burner
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1