{"title":"Three-dimensional printing of medical devices and biomaterials with antimicrobial activity: A systematic review","authors":"Manoela Almeida Martins Mace , Camila Leites Reginatto , Rosane Michele Duarte Soares , Alexandre Meneghello Fuentefria","doi":"10.1016/j.bprint.2024.e00334","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>Medical device-associated infections pose a threat to healthcare budgets in both developed and developing countries. Over the last decade, researchers have been looking for antimicrobial biomaterials using three-dimensional (3D) printing. This systematic review<span> aims to understand the current state of the art in antimicrobial 3D-printed materials and their applications in healthcare. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to conduct this study. PubMed, Web of Science, Embase, and Scopus databases were searched for this review. According to the inclusion criteria, 269 relevant articles were retrieved for this study. Material extrusion<span><span> was revealed to be the most commonly used 3D printing methodology for biomaterials and medical device production. Polylactic acid, </span>polycaprolactone, chitosan, and </span></span></span>alginate<span><span> were the most explored materials for this application. Besides, vancomycin and </span>gentamicin were the most prevalent antimicrobial substances loaded into 3D biomaterials. Further, </span></span><span><em>Staphylococcus aureus</em></span> and <em>Escherichia coli</em><span> are the most evaluated pathogens against 3D-printed materials. In conclusion, 3D printing is an excellent tool for designing functionalized biomaterials and developing alternatives for nosocomial infections. We hope this review provides helpful insights for scientists and innovation centers to understand the potential of the 3D-printed antimicrobial materials found in this study and the demands and opportunities for further research in this area.</span></p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"38 ","pages":"Article e00334"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S240588662400006X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Medical device-associated infections pose a threat to healthcare budgets in both developed and developing countries. Over the last decade, researchers have been looking for antimicrobial biomaterials using three-dimensional (3D) printing. This systematic review aims to understand the current state of the art in antimicrobial 3D-printed materials and their applications in healthcare. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to conduct this study. PubMed, Web of Science, Embase, and Scopus databases were searched for this review. According to the inclusion criteria, 269 relevant articles were retrieved for this study. Material extrusion was revealed to be the most commonly used 3D printing methodology for biomaterials and medical device production. Polylactic acid, polycaprolactone, chitosan, and alginate were the most explored materials for this application. Besides, vancomycin and gentamicin were the most prevalent antimicrobial substances loaded into 3D biomaterials. Further, Staphylococcus aureus and Escherichia coli are the most evaluated pathogens against 3D-printed materials. In conclusion, 3D printing is an excellent tool for designing functionalized biomaterials and developing alternatives for nosocomial infections. We hope this review provides helpful insights for scientists and innovation centers to understand the potential of the 3D-printed antimicrobial materials found in this study and the demands and opportunities for further research in this area.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.