Bioprinting of self-healing materials and nanostructures for biomedical applications: Recent advances and progresses on fabrication and characterization techniques
{"title":"Bioprinting of self-healing materials and nanostructures for biomedical applications: Recent advances and progresses on fabrication and characterization techniques","authors":"Babak Mikaeeli Kangarshahi , Seyed Morteza Naghib , Gelareh Mikaeeli Kangarshahi , M.R. Mozafari","doi":"10.1016/j.bprint.2024.e00335","DOIUrl":null,"url":null,"abstract":"<div><p>Bioprinting of self-healing materials and nanostructures has gained significant attention in recent years due of its potential benefits in biomedical applications. Self-healing materials and nanostructures can enhance the mechanical stability of printed constructs by restoring their strength, stiffness, and elasticity following damage. Self-healing materials and nanostructures can improve the performance of printed constructs by preserving their viability, differentiation, and integration even when they are damaged. Self-healing materials and nanostructures possess the ability to offer supplementary capabilities, including medication delivery, biosensing, and bioimaging. This is achieved by their capacity to react to external stimuli, such as light, heat, or pH, and subsequently release pharmaceuticals, generate signals, or alter colors. This study presents a comprehensive summary of the latest progress in the field of bioprinting for the creation of self-healing materials and nanostructures. The emphasis is placed on the methods used for their production, analysis, and evaluation. Initially, we provide the fundamental concepts and methodologies of bioprinting, followed by an explanation of the primary categories and characteristics of self-healing materials and nanostructures. Here, we showcase a selection of illustrative instances where self-healing materials and nanostructures have been bio-printed for diverse biological purposes, including tissue engineering, organ transplantation, drug administration, and wound healing. In addition, we analyze the present constraints and potential future directions of this developing domain, including the capacity for expansion, compatibility with living organisms, and regulatory aspects of printing self-repairing substances and nanostructures. We anticipate that this review will serve as a catalyst for novel concepts and promote additional investigation in the field of bioprinting of self-repairing substances and nanostructures for biomedical purposes.</p></div>","PeriodicalId":37770,"journal":{"name":"Bioprinting","volume":"38 ","pages":"Article e00335"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprinting","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405886624000071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Bioprinting of self-healing materials and nanostructures has gained significant attention in recent years due of its potential benefits in biomedical applications. Self-healing materials and nanostructures can enhance the mechanical stability of printed constructs by restoring their strength, stiffness, and elasticity following damage. Self-healing materials and nanostructures can improve the performance of printed constructs by preserving their viability, differentiation, and integration even when they are damaged. Self-healing materials and nanostructures possess the ability to offer supplementary capabilities, including medication delivery, biosensing, and bioimaging. This is achieved by their capacity to react to external stimuli, such as light, heat, or pH, and subsequently release pharmaceuticals, generate signals, or alter colors. This study presents a comprehensive summary of the latest progress in the field of bioprinting for the creation of self-healing materials and nanostructures. The emphasis is placed on the methods used for their production, analysis, and evaluation. Initially, we provide the fundamental concepts and methodologies of bioprinting, followed by an explanation of the primary categories and characteristics of self-healing materials and nanostructures. Here, we showcase a selection of illustrative instances where self-healing materials and nanostructures have been bio-printed for diverse biological purposes, including tissue engineering, organ transplantation, drug administration, and wound healing. In addition, we analyze the present constraints and potential future directions of this developing domain, including the capacity for expansion, compatibility with living organisms, and regulatory aspects of printing self-repairing substances and nanostructures. We anticipate that this review will serve as a catalyst for novel concepts and promote additional investigation in the field of bioprinting of self-repairing substances and nanostructures for biomedical purposes.
期刊介绍:
Bioprinting is a broad-spectrum, multidisciplinary journal that covers all aspects of 3D fabrication technology involving biological tissues, organs and cells for medical and biotechnology applications. Topics covered include nanomaterials, biomaterials, scaffolds, 3D printing technology, imaging and CAD/CAM software and hardware, post-printing bioreactor maturation, cell and biological factor patterning, biofabrication, tissue engineering and other applications of 3D bioprinting technology. Bioprinting publishes research reports describing novel results with high clinical significance in all areas of 3D bioprinting research. Bioprinting issues contain a wide variety of review and analysis articles covering topics relevant to 3D bioprinting ranging from basic biological, material and technical advances to pre-clinical and clinical applications of 3D bioprinting.