{"title":"Construction of A-stable explicit last-stage diagonal implicit Runge–Kutta (ELDIRK) methods","authors":"Rolf Mahnken, Hendrik Westermann","doi":"10.1007/s00466-024-02442-y","DOIUrl":null,"url":null,"abstract":"<p>ELDIRK methods are defined to have an <i>Explicit Last</i> stage in the general Butcher array of <i>Diagonal Implicit Runge-Kutta</i> methods, with the consequence, that no additional system of equations must be solved, compared to the embedded RK method. Two general formulations for second- and third-order ELDIRK methods have been obtained recently in Mahnken [21] with specific schemes, e.g. for the embedded implicit Euler method, the embedded trapezoidal-rule and the embedded Ellsiepen method. In the first part of this paper, we investigate some general stability characteristics of ELDIRK methods, and it will be shown that the above specific RK schemes are not A-stable. Therefore, in the second part, the above-mentioned general formulations are used for further stability investigations, with the aim to construct new second- and third-order ELDIRK methods which simultaneously are A-stable. Two numerical examples are concerned with the curing for a thermosetting material and phase-field RVE modeling for crystallinity and orientation. The numerical results confirm the theoretical results on convergence order and stability.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"15 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02442-y","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
ELDIRK methods are defined to have an Explicit Last stage in the general Butcher array of Diagonal Implicit Runge-Kutta methods, with the consequence, that no additional system of equations must be solved, compared to the embedded RK method. Two general formulations for second- and third-order ELDIRK methods have been obtained recently in Mahnken [21] with specific schemes, e.g. for the embedded implicit Euler method, the embedded trapezoidal-rule and the embedded Ellsiepen method. In the first part of this paper, we investigate some general stability characteristics of ELDIRK methods, and it will be shown that the above specific RK schemes are not A-stable. Therefore, in the second part, the above-mentioned general formulations are used for further stability investigations, with the aim to construct new second- and third-order ELDIRK methods which simultaneously are A-stable. Two numerical examples are concerned with the curing for a thermosetting material and phase-field RVE modeling for crystallinity and orientation. The numerical results confirm the theoretical results on convergence order and stability.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.