{"title":"On the use of scaled boundary shape functions in adaptive phase field modeling of brittle fracture","authors":"Carolin Birk, Ajay Kumar Pasupuleti, Rama Assaf, Sundararajan Natarajan, Hauke Gravenkamp","doi":"10.1007/s00466-024-02529-6","DOIUrl":null,"url":null,"abstract":"<p>This paper addresses the numerical modeling of brittle fracture using a phase field approach. We propose solving the coupled phase field / displacement problem by employing the scaled boundary finite element method, which facilitates the use of hierarchical meshes. An adaptive meshing approach based on this method is summarized. Contrary to existing applications of the scaled boundary finite element method in the context of phase field modeling, scaled boundary shape functions are employed in both staggered and monolithic solution schemes. The proposed methodology is verified considering two-dimensional benchmark problems. Very good agreement with finite element results of the force-displacement curves and crack paths is observed regardless of the solution scheme or meshing strategy.</p>","PeriodicalId":55248,"journal":{"name":"Computational Mechanics","volume":"130 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00466-024-02529-6","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the numerical modeling of brittle fracture using a phase field approach. We propose solving the coupled phase field / displacement problem by employing the scaled boundary finite element method, which facilitates the use of hierarchical meshes. An adaptive meshing approach based on this method is summarized. Contrary to existing applications of the scaled boundary finite element method in the context of phase field modeling, scaled boundary shape functions are employed in both staggered and monolithic solution schemes. The proposed methodology is verified considering two-dimensional benchmark problems. Very good agreement with finite element results of the force-displacement curves and crack paths is observed regardless of the solution scheme or meshing strategy.
期刊介绍:
The journal reports original research of scholarly value in computational engineering and sciences. It focuses on areas that involve and enrich the application of mechanics, mathematics and numerical methods. It covers new methods and computationally-challenging technologies.
Areas covered include method development in solid, fluid mechanics and materials simulations with application to biomechanics and mechanics in medicine, multiphysics, fracture mechanics, multiscale mechanics, particle and meshfree methods. Additionally, manuscripts including simulation and method development of synthesis of material systems are encouraged.
Manuscripts reporting results obtained with established methods, unless they involve challenging computations, and manuscripts that report computations using commercial software packages are not encouraged.