Function of NAD metabolism in white adipose tissue: lessons from mouse models.

IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Adipocyte Pub Date : 2024-12-01 Epub Date: 2024-02-15 DOI:10.1080/21623945.2024.2313297
So Young Kwon, Yoon Jung Park
{"title":"Function of NAD metabolism in white adipose tissue: lessons from mouse models.","authors":"So Young Kwon, Yoon Jung Park","doi":"10.1080/21623945.2024.2313297","DOIUrl":null,"url":null,"abstract":"<p><p>Nicotinamide Adenine Dinucleotide (NAD) is an endogenous substance in redox reactions and regulates various functions in metabolism. NAD and its precursors are known for their anti-ageing and anti-obesity properties and are mainly active in the liver and muscle. Boosting NAD+ through supplementation with the precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), enhances insulin sensitivity and circadian rhythm in the liver, and improves mitochondrial function in the muscle. Recent evidence has revealed that the adipose tissue could be another direct target of NAD supplementation by attenuating inflammation and fat accumulation. Moreover, murine studies with genetically modified models demonstrated that nicotinamide phosphoribosyltransferase (NAMPT), a NAD regulatory enzyme that synthesizes NMN, played a critical role in lipogenesis and lipolysis in an adipocyte-specific manner. The tissue-specific effects of NAD+ metabolic pathways indicate a potential of the NAD precursors to control metabolic stress particularly via focusing on adipose tissue. Therefore, this narrative review raises an importance of NAD metabolism in white adipose tissue (WAT) through a variety of studies using different mouse models.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10877972/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2024.2313297","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/15 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Nicotinamide Adenine Dinucleotide (NAD) is an endogenous substance in redox reactions and regulates various functions in metabolism. NAD and its precursors are known for their anti-ageing and anti-obesity properties and are mainly active in the liver and muscle. Boosting NAD+ through supplementation with the precursors, such as nicotinamide mononucleotide (NMN) or nicotinamide riboside (NR), enhances insulin sensitivity and circadian rhythm in the liver, and improves mitochondrial function in the muscle. Recent evidence has revealed that the adipose tissue could be another direct target of NAD supplementation by attenuating inflammation and fat accumulation. Moreover, murine studies with genetically modified models demonstrated that nicotinamide phosphoribosyltransferase (NAMPT), a NAD regulatory enzyme that synthesizes NMN, played a critical role in lipogenesis and lipolysis in an adipocyte-specific manner. The tissue-specific effects of NAD+ metabolic pathways indicate a potential of the NAD precursors to control metabolic stress particularly via focusing on adipose tissue. Therefore, this narrative review raises an importance of NAD metabolism in white adipose tissue (WAT) through a variety of studies using different mouse models.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
白色脂肪组织中 NAD 代谢的功能:小鼠模型的启示。
烟酰胺腺嘌呤二核苷酸(NAD)是氧化还原反应中的一种内源性物质,调节新陈代谢中的各种功能。NAD 及其前体具有抗衰老和抗肥胖的功效,主要活跃在肝脏和肌肉中。通过补充前体物质(如烟酰胺单核苷酸(NMN)或烟酰胺核苷酸(NR))来提高 NAD+,可增强肝脏对胰岛素的敏感性和昼夜节律,并改善肌肉中线粒体的功能。最近的证据显示,脂肪组织可能是补充 NAD 的另一个直接目标,因为它可以减轻炎症和脂肪堆积。此外,利用转基因模型进行的小鼠研究表明,烟酰胺磷酸核糖转移酶(NAMPT)是一种合成 NMN 的 NAD 调节酶,它以脂肪细胞特异性的方式在脂肪生成和脂肪分解中发挥着关键作用。NAD+ 代谢途径对组织的特异性影响表明,NAD 前体具有控制代谢压力的潜力,尤其是通过关注脂肪组织。因此,本综述通过使用不同小鼠模型的各种研究,提出了 NAD 代谢在白色脂肪组织(WAT)中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
期刊最新文献
Ojeok-san enhances platinum sensitivity in ovarian cancer by regulating adipocyte paracrine IGF1 secretion. Function of NAD metabolism in white adipose tissue: lessons from mouse models. Ethnic disparities and its association between epicardial adipose tissue thickness and cardiometabolic parameters. A comparative assessment of reference genes in mouse brown adipocyte differentiation and thermogenesis in vitro. Adipose tissue-selective ablation of ADAM10 results in divergent metabolic phenotypes following long-term dietary manipulation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1