Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation.

J M Kilonzi, S Otieno
{"title":"Degradation kinetics and physiological studies of organophosphates degrading microorganisms for soil bioremediation.","authors":"J M Kilonzi, S Otieno","doi":"10.1007/s44154-023-00138-6","DOIUrl":null,"url":null,"abstract":"<p><p>Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.</p>","PeriodicalId":74874,"journal":{"name":"Stress biology","volume":"4 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10847075/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stress biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s44154-023-00138-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Organophosphate compounds are widely used in agricultural activities to optimize food production. Contamination of field soil by these compounds may result in detrimental effects on soil biota. The aim of the present study was to isolate microorganisms from field soils and evaluate the strains on ability to degrade organophosphates as single isolate and as a consortium. Isolated strains were identified using both biochemical and molecular techniques. Results revealed that, out of the 46 isolated strains, three isolates herein referred to as S6, S36 and S37 showed an average diazinon degradation rate of 76.4%, 76.7% and 76.8% respectively, of the initial dose (50 ppm) within 11 days of incubation in mineral medium. Notably, isolates S36 and S37 were more effective than S6 in degrading diazinon by 40% in soil aliquot after 11 days and therefore were evaluated on biochemical reactions and molecular identification. The isolates showed variable biochemical characteristics. However, both isolates possessed catalase enzyme, but lacked oxidase enzyme. Molecular characterization showed that, the closest species for S36 and S37 were Priestia megaterium and P. arybattia, respectively, based on 16S rRNA gene similarity (> 99%). Combination of the strains increased diazinon degradation ability by 45% compared to single strain treatment. Chlorpyrifos was the most highly degraded organophosphate, compared to phorate and cadusafos. Therefore it is expected that the pesticide-degrading bacteria could be a solution to soil health improvement and contribution to the production of safe agricultural products.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于土壤生物修复的有机磷降解微生物的降解动力学和生理学研究。
有机磷化合物被广泛用于农业活动,以优化粮食生产。这些化合物污染田间土壤可能会对土壤生物区系造成有害影响。本研究的目的是从田间土壤中分离微生物,并评估菌株作为单个分离菌株和作为菌群降解有机磷的能力。分离出的菌株采用生化和分子技术进行鉴定。结果表明,在 46 株分离菌株中,S6、S36 和 S37 三株分离菌株在矿物培养基中培养 11 天后,对初始剂量(50 ppm)的二嗪农平均降解率分别为 76.4%、76.7% 和 76.8%。值得注意的是,在 11 天后的土壤等分中,分离物 S36 和 S37 比 S6 更有效地降解了 40% 的二嗪农,因此对其进行了生化反应和分子鉴定评估。分离物表现出不同的生化特征。不过,两种分离物都具有过氧化氢酶,但缺乏氧化酶。分子鉴定结果表明,根据 16S rRNA 基因相似度(> 99%),S36 和 S37 最接近的菌种分别是 Priestia megaterium 和 P. arybattia。与单一菌株处理相比,组合菌株的二嗪农降解能力提高了 45%。与甲拌磷和卡杜沙磷相比,毒死蜱是降解率最高的有机磷。因此,农药降解菌有望成为改善土壤健康的一种解决方案,并有助于生产安全的农产品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
SPIRRIG is required for BRICK1 stability and salt stress induced root hair developmental plasticity in Arabidopsis. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of quinoa salt bladders. Metabolic regulation of 5-oxoproline for enhanced heat tolerance in perennial ryegrass. Zinc metalloprotease FgM35, which targets the wheat zinc-binding protein TaZnBP, contributes to the virulence of Fusarium graminearum. Physiological and biochemical responses in a cadmium accumulator of traditional Chinese medicine Ligusticum sinense cv. Chuanxiong under cadmium condition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1