Xingxian Guo, Shiying Huang, Yonghong Zhang, Hong Wang, Lisha Li, Jianhua Ran, Dilong Chen, Xiaopeng Li, Jing Li
{"title":"Evodiamine inhibits growth of vemurafenib drug-resistant melanoma via suppressing IRS4/PI3K/AKT signaling pathway","authors":"Xingxian Guo, Shiying Huang, Yonghong Zhang, Hong Wang, Lisha Li, Jianhua Ran, Dilong Chen, Xiaopeng Li, Jing Li","doi":"10.1007/s11418-023-01769-9","DOIUrl":null,"url":null,"abstract":"<div><p>Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose–effect relationship and time–effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.</p></div>","PeriodicalId":654,"journal":{"name":"Journal of Natural Medicines","volume":"78 2","pages":"342 - 354"},"PeriodicalIF":2.5000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Medicines","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11418-023-01769-9","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Evodiamine, a novel alkaloid, was isolated from the fruit of tetradium. It exerts a diversity of pharmacological effects and has been used to treat gastropathy, hypertension, and eczema. Several studies reported that evodiamine has various biological effects, including anti-nociceptive, anti-bacterial, anti-obesity, and anti-cancer activities. However, there is no research regarding its effects on drug-resistant cancer. This study aimed to investigate the effect of evodiamine on human vemurafenib-resistant melanoma cells (A375/R cells) proliferation ability and its mechanism. Cell activity was assessed using the cell counting kit-8 (CCK-8) method. Flow cytometry assay was used to assess cell apoptosis and cell cycle. A xenograft model was used to analyze the inhibitory effects of evodiamine on tumor growth. Bioinformatics analyses, network pharmacology, and molecular docking were used to explore the potential mechanism of evodiamine in vemurafenib-resistant melanoma. RT-qPCR and Western blotting were performed to reveal the molecular mechanism. The alkaloid extract of the fruit of tetradium, evodiamine showed the strongest tumor inhibitory effect on vemurafenib-resistant melanoma cells compared to treatment with vemurafenib alone. Evodiamine inhibited vemurafenib-resistant melanoma cell growth, proliferation, and induced apoptosis, conforming to a dose–effect relationship and time–effect relationship. Results from network pharmacology and molecular docking suggested that evodiamine might interact with IRS4 to suppress growth of human vemurafenib-resistant melanoma cells. Interestingly, evodiamine suppressed IRS4 expression and then inhibited PI3K/AKT signaling pathway, and thus had the therapeutic action on vemurafenib-resistant melanoma.
期刊介绍:
The Journal of Natural Medicines is an international journal publishing original research in naturally occurring medicines and their related foods and cosmetics. It covers:
-chemistry of natural products
-biochemistry of medicinal plants
-pharmacology of natural products and herbs, including Kampo formulas and traditional herbs
-botanical anatomy
-cultivation of medicinal plants.
The journal accepts Original Papers, Notes, Rapid Communications and Natural Resource Letters. Reviews and Mini-Reviews are generally invited.