Wan-Ting Kuo, I-Ying Kuo, Hung-Chia Hsieh, Ssu-Ting Wu, Wu-Chou Su, Yi-Ching Wang
{"title":"Rab37 mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion in lung cancer.","authors":"Wan-Ting Kuo, I-Ying Kuo, Hung-Chia Hsieh, Ssu-Ting Wu, Wu-Chou Su, Yi-Ching Wang","doi":"10.1186/s12929-024-01009-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor expressed on the surface of T cells. High expression of PD-1 leads to T-cell dysfunction in the tumor microenvironment (TME). However, the mechanism of intracellular trafficking and plasma membrane presentation of PD-1 remains unclear.</p><p><strong>Methods: </strong>Multiple databases of lung cancer patients were integratively analyzed to screen Rab proteins and potential immune-related signaling pathways. Imaging and various biochemical assays were performed in Jurkat T cells, splenocytes, and human peripheral blood mononuclear cells (PBMCs). Rab37 knockout mice and specimens of lung cancer patients were used to validate the concept.</p><p><strong>Results: </strong>Here, we identify novel mechanisms of intracellular trafficking and plasma membrane presentation of PD-1 mediated by Rab37 small GTPase to sustain T cell exhaustion, thereby leading to poor patient outcome. PD-1 colocalized with Rab37-specific vesicles of T cells in a GTP-dependent manner whereby Rab37 mediated dynamic trafficking and membrane presentation of PD-1. However, glycosylation mutant PD-1 delayed cargo recruitment to the Rab37 vesicles, thus stalling membrane presentation. Notably, T cell proliferation and activity were upregulated in tumor-infiltrating T cells from the tumor-bearing Rab37 knockout mice compared to those from wild type. Clinically, the multiplex immunofluorescence-immunohistochemical assay indicated that patients with high Rab37<sup>+</sup>/PD-1<sup>+</sup>/TIM3<sup>+</sup>/CD8<sup>+</sup> tumor infiltrating T cell profile correlated with advanced tumor stages and poor overall survival. Moreover, human PBMCs from patients demonstrated high expression of Rab37, which positively correlated with elevated levels of PD-1<sup>+</sup> and TIM3<sup>+</sup> in CD8<sup>+</sup> T cells exhibiting reduced tumoricidal activity.</p><p><strong>Conclusions: </strong>Our results provide the first evidence that Rab37 small GTPase mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion, and the tumor promoting function of Rab37/PD-1 axis in T cells of TME in lung cancer. The expression profile of Rab37<sup>high</sup>/PD-1<sup>high</sup>/TIM3<sup>high</sup> in tumor-infiltrating CD8<sup>+</sup> T cells is a biomarker for poor prognosis in lung cancer patients.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"31 1","pages":"20"},"PeriodicalIF":9.0000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01009-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Programmed cell death protein 1 (PD-1) is an immune checkpoint receptor expressed on the surface of T cells. High expression of PD-1 leads to T-cell dysfunction in the tumor microenvironment (TME). However, the mechanism of intracellular trafficking and plasma membrane presentation of PD-1 remains unclear.
Methods: Multiple databases of lung cancer patients were integratively analyzed to screen Rab proteins and potential immune-related signaling pathways. Imaging and various biochemical assays were performed in Jurkat T cells, splenocytes, and human peripheral blood mononuclear cells (PBMCs). Rab37 knockout mice and specimens of lung cancer patients were used to validate the concept.
Results: Here, we identify novel mechanisms of intracellular trafficking and plasma membrane presentation of PD-1 mediated by Rab37 small GTPase to sustain T cell exhaustion, thereby leading to poor patient outcome. PD-1 colocalized with Rab37-specific vesicles of T cells in a GTP-dependent manner whereby Rab37 mediated dynamic trafficking and membrane presentation of PD-1. However, glycosylation mutant PD-1 delayed cargo recruitment to the Rab37 vesicles, thus stalling membrane presentation. Notably, T cell proliferation and activity were upregulated in tumor-infiltrating T cells from the tumor-bearing Rab37 knockout mice compared to those from wild type. Clinically, the multiplex immunofluorescence-immunohistochemical assay indicated that patients with high Rab37+/PD-1+/TIM3+/CD8+ tumor infiltrating T cell profile correlated with advanced tumor stages and poor overall survival. Moreover, human PBMCs from patients demonstrated high expression of Rab37, which positively correlated with elevated levels of PD-1+ and TIM3+ in CD8+ T cells exhibiting reduced tumoricidal activity.
Conclusions: Our results provide the first evidence that Rab37 small GTPase mediates trafficking and membrane presentation of PD-1 to sustain T cell exhaustion, and the tumor promoting function of Rab37/PD-1 axis in T cells of TME in lung cancer. The expression profile of Rab37high/PD-1high/TIM3high in tumor-infiltrating CD8+ T cells is a biomarker for poor prognosis in lung cancer patients.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.