Xuejie Gao, Qilin Feng, Qikai Zhang, Yifei Zhang, Chaolu Hu, Li Zhang, Hui Zhang, Guanli Wang, Ke Hu, Mengmeng Ma, Zhuning Wang, Yujie Liu, Dong An, Hongfei Yi, Yu Peng, Xiaosong Wu, Gege Chen, Xinyan Jia, Haiyan Cai, Jumei Shi
{"title":"Targeting enolase 1 reverses bortezomib resistance in multiple myeloma through YWHAZ/Parkin axis.","authors":"Xuejie Gao, Qilin Feng, Qikai Zhang, Yifei Zhang, Chaolu Hu, Li Zhang, Hui Zhang, Guanli Wang, Ke Hu, Mengmeng Ma, Zhuning Wang, Yujie Liu, Dong An, Hongfei Yi, Yu Peng, Xiaosong Wu, Gege Chen, Xinyan Jia, Haiyan Cai, Jumei Shi","doi":"10.1186/s12929-024-01101-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.</p><p><strong>Methods: </strong>The bone marrow of clinical MM patients and healthy normal donors was used to compare the expression level of ENO1. Using online databases, we conducted an analysis to examine the correlation between ENO1 expression and both clinicopathological characteristics and patient outcomes. To investigate the biological functions of ENO1 in MM and the underlying molecular mechanisms involved, we conducted the following experiment: construction of a subcutaneous graft tumor model, co-immunoprecipitation, western blot, quantitative real-time polymerase chain reaction, immunohistochemistry, flow cytometry, and cell functional assays.</p><p><strong>Results: </strong>ENO1 was identified as an unfavorable prognostic factor in MM. ENO1 knockdown suppresses tumorigenicity and causes cell cycle arrest. Inhibition of ENO1-regulated mitophagy sensitizes tumor cells to apoptosis. ENO1 enhanced the stability of the YWHAZ protein by increasing the acetylation of lysine in YWHAZ while antagonizing its ubiquitination, which in turn promoted mitophagy. HDAC6 mediates the deacetylation of YWHAZ by deacetylating the K138 site of YWHAZ. Inhibition of HDAC6 increased YWHAZ acetylation and decreased YWHAZ ubiquitination. Furthermore, combination treatment with bortezomib and pharmaceutical agents targeting ENO1 has synergistic anti-MM effects both in vivo and in vitro.</p><p><strong>Conclusion: </strong>Our data suggest that ENO1 promotes MM tumorigenesis and progression. ENO1 activates mitophagy by promoting the stability of YWHAZ and inhibits apoptosis and thus, leads to the drug resistance. ENO1-dependent mitophagy promotes MM proliferation and suppresses the level of bortezomib-induced apoptosis. Inhibition of ENO1 may represent a potential strategy to reverse the resistance of MM to bortezomib.</p>","PeriodicalId":15365,"journal":{"name":"Journal of Biomedical Science","volume":"32 1","pages":"9"},"PeriodicalIF":9.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744840/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomedical Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12929-024-01101-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Enolase 1 (ENO1) is a conserved glycolytic enzyme that regulates glycolysis metabolism. However, its role beyond glycolysis in the pathophysiology of multiple myeloma (MM) remains largely elusive. Herein, this study aimed to elucidate the function of ENO1 in MM, particularly its impact on mitophagy under bortezomib-induced apoptosis.
Methods: The bone marrow of clinical MM patients and healthy normal donors was used to compare the expression level of ENO1. Using online databases, we conducted an analysis to examine the correlation between ENO1 expression and both clinicopathological characteristics and patient outcomes. To investigate the biological functions of ENO1 in MM and the underlying molecular mechanisms involved, we conducted the following experiment: construction of a subcutaneous graft tumor model, co-immunoprecipitation, western blot, quantitative real-time polymerase chain reaction, immunohistochemistry, flow cytometry, and cell functional assays.
Results: ENO1 was identified as an unfavorable prognostic factor in MM. ENO1 knockdown suppresses tumorigenicity and causes cell cycle arrest. Inhibition of ENO1-regulated mitophagy sensitizes tumor cells to apoptosis. ENO1 enhanced the stability of the YWHAZ protein by increasing the acetylation of lysine in YWHAZ while antagonizing its ubiquitination, which in turn promoted mitophagy. HDAC6 mediates the deacetylation of YWHAZ by deacetylating the K138 site of YWHAZ. Inhibition of HDAC6 increased YWHAZ acetylation and decreased YWHAZ ubiquitination. Furthermore, combination treatment with bortezomib and pharmaceutical agents targeting ENO1 has synergistic anti-MM effects both in vivo and in vitro.
Conclusion: Our data suggest that ENO1 promotes MM tumorigenesis and progression. ENO1 activates mitophagy by promoting the stability of YWHAZ and inhibits apoptosis and thus, leads to the drug resistance. ENO1-dependent mitophagy promotes MM proliferation and suppresses the level of bortezomib-induced apoptosis. Inhibition of ENO1 may represent a potential strategy to reverse the resistance of MM to bortezomib.
期刊介绍:
The Journal of Biomedical Science is an open access, peer-reviewed journal that focuses on fundamental and molecular aspects of basic medical sciences. It emphasizes molecular studies of biomedical problems and mechanisms. The National Science and Technology Council (NSTC), Taiwan supports the journal and covers the publication costs for accepted articles. The journal aims to provide an international platform for interdisciplinary discussions and contribute to the advancement of medicine. It benefits both readers and authors by accelerating the dissemination of research information and providing maximum access to scholarly communication. All articles published in the Journal of Biomedical Science are included in various databases such as Biological Abstracts, BIOSIS, CABI, CAS, Citebase, Current contents, DOAJ, Embase, EmBiology, and Global Health, among others.