Mixotrophy in cyanobacteria

IF 5.9 2区 生物学 Q1 MICROBIOLOGY Current opinion in microbiology Pub Date : 2024-02-06 DOI:10.1016/j.mib.2024.102432
María del Carmen Muñoz-Marín, Antonio López-Lozano, José Ángel Moreno-Cabezuelo, Jesús Díez, José Manuel García-Fernández
{"title":"Mixotrophy in cyanobacteria","authors":"María del Carmen Muñoz-Marín,&nbsp;Antonio López-Lozano,&nbsp;José Ángel Moreno-Cabezuelo,&nbsp;Jesús Díez,&nbsp;José Manuel García-Fernández","doi":"10.1016/j.mib.2024.102432","DOIUrl":null,"url":null,"abstract":"<div><p>Cyanobacteria evolved the oxygenic photosynthesis to generate organic matter from CO<sub>2</sub> and sunlight, and they were responsible for the production of oxygen in the Earth's atmosphere. This made them a model for photosynthetic organisms, since they are easier to study than higher plants. Early studies suggested that only a minority among cyanobacteria might assimilate organic compounds, being considered mostly autotrophic for decades. However, compelling evidence from marine and freshwater cyanobacteria, including toxic strains, in the laboratory and in the field, has been obtained in the last decades: by using physiological and omics approaches, mixotrophy has been found to be a more widespread feature than initially believed. Furthermore, dominant clades of marine cyanobacteria can take up organic compounds, and mixotrophy is critical for their survival in deep waters with very low light. Hence, mixotrophy seems to be an essential trait in the metabolism of most cyanobacteria, which can be exploited for biotechnological purposes.</p></div>","PeriodicalId":10921,"journal":{"name":"Current opinion in microbiology","volume":"78 ","pages":"Article 102432"},"PeriodicalIF":5.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1369527424000080/pdfft?md5=0eecd413be9b378d8959c16ecafa0844&pid=1-s2.0-S1369527424000080-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in microbiology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369527424000080","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cyanobacteria evolved the oxygenic photosynthesis to generate organic matter from CO2 and sunlight, and they were responsible for the production of oxygen in the Earth's atmosphere. This made them a model for photosynthetic organisms, since they are easier to study than higher plants. Early studies suggested that only a minority among cyanobacteria might assimilate organic compounds, being considered mostly autotrophic for decades. However, compelling evidence from marine and freshwater cyanobacteria, including toxic strains, in the laboratory and in the field, has been obtained in the last decades: by using physiological and omics approaches, mixotrophy has been found to be a more widespread feature than initially believed. Furthermore, dominant clades of marine cyanobacteria can take up organic compounds, and mixotrophy is critical for their survival in deep waters with very low light. Hence, mixotrophy seems to be an essential trait in the metabolism of most cyanobacteria, which can be exploited for biotechnological purposes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蓝藻的混合营养
蓝藻进化出含氧光合作用,利用二氧化碳和阳光产生有机物,它们是地球大气中氧气的制造者。这使它们成为光合生物的典范,因为它们比高等植物更容易研究。早期的研究表明,蓝藻中只有少数可能同化有机化合物,因此几十年来它们一直被认为主要是自养生物。然而,在过去的几十年中,人们从海洋和淡水蓝藻(包括有毒菌株)的实验室和野外研究中获得了令人信服的证据:通过使用生理和 omics 方法,人们发现蓝藻的混养现象比最初认为的更为普遍。此外,海洋蓝藻的主要支系可以吸收有机化合物,而混养对于它们在光照极弱的深水中生存至关重要。因此,混养似乎是大多数蓝藻新陈代谢的基本特征,可用于生物技术目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in microbiology
Current opinion in microbiology 生物-微生物学
CiteScore
10.00
自引率
0.00%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Microbiology is a systematic review journal that aims to provide specialists with a unique and educational platform to keep up-to-date with the expanding volume of information published in the field of microbiology. It consists of 6 issues per year covering the following 11 sections, each of which is reviewed once a year: Host-microbe interactions: bacteria Cell regulation Environmental microbiology Host-microbe interactions: fungi/parasites/viruses Antimicrobials Microbial systems biology Growth and development: eukaryotes/prokaryotes
期刊最新文献
Temporospatial control of topoisomerases by essential cellular processes Editorial overview: Human fungal pathogens: An increasing threat It's complicated: relationships between integrative and conjugative elements and their bacterial hosts How do bacteria tune transcription termination efficiency? Temperature structuring of microbial communities on a global scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1