Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato.

IF 17.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Plant Pub Date : 2024-04-01 Epub Date: 2024-02-06 DOI:10.1016/j.molp.2024.02.003
Peng Cao, Jun Yang, Linghao Xia, Zhonghui Zhang, Zeyong Wu, Yingchen Hao, Penghui Liu, Chao Wang, Chun Li, Jie Yang, Jun Lai, Xianggui Li, Meng Deng, Shouchuang Wang
{"title":"Two gene clusters and their positive regulator SlMYB13 that have undergone domestication-associated negative selection control phenolamide accumulation and drought tolerance in tomato.","authors":"Peng Cao, Jun Yang, Linghao Xia, Zhonghui Zhang, Zeyong Wu, Yingchen Hao, Penghui Liu, Chao Wang, Chun Li, Jie Yang, Jun Lai, Xianggui Li, Meng Deng, Shouchuang Wang","doi":"10.1016/j.molp.2024.02.003","DOIUrl":null,"url":null,"abstract":"<p><p>Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":null,"pages":null},"PeriodicalIF":17.1000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.02.003","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Among plant metabolites, phenolamides, which are conjugates of hydroxycinnamic acid derivatives and polyamines, play important roles in plant adaptation to abiotic and biotic stresses. However, the molecular mechanisms underlying phenolamide metabolism and regulation as well as the effects of domestication and breeding on phenolamide diversity in tomato remain largely unclear. In this study, we performed a metabolite-based genome-wide association study and identified two biosynthetic gene clusters (BGC7 and BGC11) containing 12 genes involved in phenolamide metabolism, including four biosynthesis genes (two 4CL genes, one C3H gene, and one CPA gene), seven decoration genes (five AT genes and two UGT genes), and one transport protein gene (DTX29). Using gene co-expression network analysis we further discovered that SlMYB13 positively regulates the expression of two gene clusters, thereby promoting phenolamide accumulation. Genetic and physiological analyses showed that BGC7, BGC11 and SlMYB13 enhance drought tolerance by enhancing scavenging of reactive oxygen species and increasing abscisic acid content in tomato. Natural variation analysis suggested that BGC7, BGC11 and SlMYB13 were negatively selected during tomato domestication and improvement, leading to reduced phenolamide content and drought tolerance of cultivated tomato. Collectively, our study discovers a key mechanism of phenolamide biosynthesis and regulation in tomato and reveals that crop domestication and improvement shapes metabolic diversity to affect plant environmental adaptation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
经过驯化相关负选择的两个基因簇及其正调控因子 SlMYB13 控制着番茄的苯甲酰胺积累和耐旱性。
番茄是研究植物如何有效协调特殊代谢物以适应环境变化的理想模型。在植物代谢产物中,酚酰胺是羟基肉桂酸衍生物和多胺的共轭物,在植物适应非生物和生物胁迫方面发挥着重要作用。然而,番茄中酚酰胺代谢和调控的分子机制以及育种驯化对酚酰胺多样性的影响尚未完全阐明。在此,我们进行了基于代谢组的全基因组关联研究(mGWAS),发现了两个生物合成基因簇,其中包含 12 个参与苯甲酰胺代谢的基因,包括 4 个生物合成基因(2 个 4CL 基因、1 个 C3H 基因和 1 个 CPA 基因)、7 个修饰基因(5 个 AT 基因和 2 个 UGT 基因)和 1 个转运蛋白(DTX29)。我们还发现,SlMYB13 能正向调节两个基因簇,从而促进苯甲酰胺的积累。此外,苯酚酰胺的积累诱导了活性氧(ROS)的清除和脱落酸(ABA)含量的增加,从而增强了番茄的耐旱性,这一点通过外源施用 Fer-Put 得到了进一步验证。最后,在番茄驯化和改良过程中,"HapB "组合(即 SlAT1.1-CHapB、SlAT1.2-AHapB、SlAT1.3-CHapB、SlCV86-THapB、SlDH29-THapB 和 SlMYB13-GHapB)被负选,导致酚酰胺含量减少,从而降低了耐旱性。本研究通过多组学方法系统地剖析了苯甲酰胺的生物合成机制,揭示了番茄育种过程中人类驯化对植物代谢多样性和环境适应性的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Plant
Molecular Plant 植物科学-生化与分子生物学
CiteScore
37.60
自引率
2.20%
发文量
1784
审稿时长
1 months
期刊介绍: Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution. Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.
期刊最新文献
From the T2T cotton genome to a tripartite regulatory module governing embryo folding. Manipulation of photosensory and circadian signaling restricts phenotypic plasticity in response to changing environmental conditions in Arabidopsis. AlphaFold-guided redesign of a plant pectin methylesterase inhibitor for broad-spectrum disease resistance. Efficient and multiplex gene upregulation in plants through CRISPR-Cas-mediated knockin of enhancers. Proxitome profiling reveals a conserved SGT1-NSL1 signaling module that activates NLR-mediated immunity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1