{"title":"MHY1485 potentiates immunogenic cell death induction and anti-cancer immunity following irradiation.","authors":"Lue Sun, Kumi Morikawa, Yu Sogo, Yuki Sugiura","doi":"10.1093/jrr/rrad107","DOIUrl":null,"url":null,"abstract":"<p><p>Recent in vitro experiments showed that combined treatment with MHY1485, a low-molecular-weight compound, and X-ray irradiation significantly increased apoptosis and senescence in tumor cells, which was associated with oxidative stress, endoplasmic reticulum (ER) stress and p21 stabilization, compared to radiation treatment alone. However, evidence for MHY1485 treatment-mediated suppression of tumor growth in animals is still lacking. Furthermore, it has been shown that ER stress enhances immunogenic cell death (ICD) in tumor cells, as it can exert a favorable influence on the anti-cancer immune system. In the present study, we examined whether co-treatment of MHY1485 and X-ray irradiation induces ICD and in vivo tumor growth suppression using the CT26 and Lewis lung carcinoma murine tumor cell lines. We found that MHY1485 + X-ray treatment promotes ICD more effectively than X-ray treatment alone. MHY1485 suppresses tumor growth in vivo under co-treatment with X-rays and increases INF-γ, tumor necrosis factor, interleukin-2 and interleukin-12 levels in the spleen as well as the presence of CD8+ cells in the tumor. The results suggest that MHY1485 treatment leads to the conversion of irradiated tumors into effective vaccines. Thus, MHY1485 is a promising lead compound for use in combination with radiotherapy.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"205-214"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10959436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrad107","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Recent in vitro experiments showed that combined treatment with MHY1485, a low-molecular-weight compound, and X-ray irradiation significantly increased apoptosis and senescence in tumor cells, which was associated with oxidative stress, endoplasmic reticulum (ER) stress and p21 stabilization, compared to radiation treatment alone. However, evidence for MHY1485 treatment-mediated suppression of tumor growth in animals is still lacking. Furthermore, it has been shown that ER stress enhances immunogenic cell death (ICD) in tumor cells, as it can exert a favorable influence on the anti-cancer immune system. In the present study, we examined whether co-treatment of MHY1485 and X-ray irradiation induces ICD and in vivo tumor growth suppression using the CT26 and Lewis lung carcinoma murine tumor cell lines. We found that MHY1485 + X-ray treatment promotes ICD more effectively than X-ray treatment alone. MHY1485 suppresses tumor growth in vivo under co-treatment with X-rays and increases INF-γ, tumor necrosis factor, interleukin-2 and interleukin-12 levels in the spleen as well as the presence of CD8+ cells in the tumor. The results suggest that MHY1485 treatment leads to the conversion of irradiated tumors into effective vaccines. Thus, MHY1485 is a promising lead compound for use in combination with radiotherapy.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.