{"title":"Recruiting grape-isolated antagonistic yeasts for the sustainable bio-management of Botrytis cinerea on grapes","authors":"Sebahat Oztekin, Funda Karbancioglu-Guler","doi":"10.1002/fes3.528","DOIUrl":null,"url":null,"abstract":"<p><i>Botrytis cinerea</i> is the causative agent of grey mould disease in grapes, which was linked to significant postharvest losses. This study examined three grape-isolated yeasts (<i>Metschnikowia</i> aff. <i>fructicola</i>, <i>Metschnikowia pulcherrima</i>, and <i>Hansenispora uvarum</i>) through <i>in vitro</i> and <i>in vivo</i> tests on detached grape berries against grey mould, as well as the elucidation of their possible mechanisms of action. The antifungal mechanism of action of yeasts was determined by the lytic enzyme activity, inhibition of spore germination, biofilm activity, iron depletion, diffusible metabolites, wound-site colonisation, mycocin, and volatile organic compounds (VOCs) production. The highest <i>in vitro</i> efficacy (83.13%) was observed on <i>M.</i> aff. <i>fructicola</i>, followed by <i>M. pulcherrima</i> (82.10%) and <i>H. uvarum</i> (71.66%). <i>Metschnikowia</i> yeasts exhibited comparable enzyme activities, including protease, β-1,3 glucanase, gelatinase chitinase, and cellulase, while <i>H. uvarum</i> had a poor enzymatic activity with chitinase and gelatinase. <i>M.</i> aff. <i>fructicola</i> showed relatively higher iron depletion activity than <i>M. pulcherrima</i>, while <i>M. pulcherrima</i> outperformed via diffusible metabolites. All yeast cultures significantly reduced spore germination by at least 86%. Overall, <i>M.</i> aff. <i>fructicola</i> exhibited the highest biocontrol activity with its iron depletion, inhibition of conidial germination, biofilm formation, VOCs, and well colonisation on grape berries. <i>M.</i> aff. <i>fructicola</i> 1-UDM outperformed all other yeasts by significantly reducing disease incidence and lesion diameter values (93.4% and 94.3%, respectively). Remarkably, <i>H. uvarum</i> VOCs demonstrated potential as a biofumigant for suppressing grey mould. All yeasts are well adapted to their ecological niche to bio-protect grapes from grey mould disease.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.528","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.528","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Botrytis cinerea is the causative agent of grey mould disease in grapes, which was linked to significant postharvest losses. This study examined three grape-isolated yeasts (Metschnikowia aff. fructicola, Metschnikowia pulcherrima, and Hansenispora uvarum) through in vitro and in vivo tests on detached grape berries against grey mould, as well as the elucidation of their possible mechanisms of action. The antifungal mechanism of action of yeasts was determined by the lytic enzyme activity, inhibition of spore germination, biofilm activity, iron depletion, diffusible metabolites, wound-site colonisation, mycocin, and volatile organic compounds (VOCs) production. The highest in vitro efficacy (83.13%) was observed on M. aff. fructicola, followed by M. pulcherrima (82.10%) and H. uvarum (71.66%). Metschnikowia yeasts exhibited comparable enzyme activities, including protease, β-1,3 glucanase, gelatinase chitinase, and cellulase, while H. uvarum had a poor enzymatic activity with chitinase and gelatinase. M. aff. fructicola showed relatively higher iron depletion activity than M. pulcherrima, while M. pulcherrima outperformed via diffusible metabolites. All yeast cultures significantly reduced spore germination by at least 86%. Overall, M. aff. fructicola exhibited the highest biocontrol activity with its iron depletion, inhibition of conidial germination, biofilm formation, VOCs, and well colonisation on grape berries. M. aff. fructicola 1-UDM outperformed all other yeasts by significantly reducing disease incidence and lesion diameter values (93.4% and 94.3%, respectively). Remarkably, H. uvarum VOCs demonstrated potential as a biofumigant for suppressing grey mould. All yeasts are well adapted to their ecological niche to bio-protect grapes from grey mould disease.
期刊介绍:
Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor.
Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights.
Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge.
Examples of areas covered in Food and Energy Security include:
• Agronomy
• Biotechnological Approaches
• Breeding & Genetics
• Climate Change
• Quality and Composition
• Food Crops and Bioenergy Feedstocks
• Developmental, Physiology and Biochemistry
• Functional Genomics
• Molecular Biology
• Pest and Disease Management
• Post Harvest Biology
• Soil Science
• Systems Biology