{"title":"Brain Mechanisms Explaining Postural Imbalance in Traumatic Brain Injury: A Systematic Review.","authors":"Zaeem Hadi, Mohammad Mahmud, Barry M Seemungal","doi":"10.1089/brain.2023.0064","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Introduction:</i></b> Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. <b><i>Methods:</i></b> PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. <b><i>Results:</i></b> The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. <b><i>Discussion:</i></b> The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"144-177"},"PeriodicalIF":2.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2023.0064","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/25 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Persisting imbalance and falls in community-dwelling traumatic brain injury (TBI) survivors are linked to reduced long-term survival. However, a detailed understanding of the impact of TBI upon the brain mechanisms mediating imbalance is lacking. To understand the state of the art concerning the brain mechanisms mediating imbalance in TBI, we performed a systematic review of the literature. Methods: PubMed, Web of Science, and Scopus were searched and peer-reviewed research articles in humans, with any severity of TBI (mild, moderate, severe, or concussion), which linked a postural balance assessment (objective or subjective) with brain imaging (through computed tomography, T1-weighted imaging, functional magnetic resonance imaging [fMRI], resting-state fMRI, diffusion tensor imaging, magnetic resonance spectroscopy, single-photon emission computed tomography, electroencephalography, magnetoencephalography, near-infrared spectroscopy, and evoked potentials) were included. Out of 1940 articles, 60 were retrieved and screened, and 25 articles fulfilling inclusion criteria were included. Results: The most consistent finding was the link between imbalance and the cerebellum; however, the regions within the cerebellum were inconsistent. Discussion: The lack of consistent findings could reflect that imbalance in TBI is due to a widespread brain network dysfunction, as opposed to focal cortical damage. The inconsistency in the reported findings may also be attributed to heterogeneity of methodology, including data analytical techniques, small sample sizes, and choice of control groups. Future studies should include a detailed clinical phenotyping of vestibular function in TBI patients to account for the confounding effect of peripheral vestibular disorders on imbalance and brain imaging.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.